49
7. Literatura
[1] The world Counts, „Current world energy consumption“, 2021. [Na spletu]. Dostopno:
https://www.theworldcounts.com/stories/current_world_energy_consumption. and its potential applications“, Front. Phys., št. 14, 2019.
[6] U. Sajevic, „Sinteza in elektrokemijska karakterizacija borofenov“, 2019.
[7] K. S. Novoselov idr., „Electric Field Effect in Atomically Thin Carbon Films Supplementary“, Science (80-. )., št. 5, str. 1–12, 2004.
[8] T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, in M. Wei, „Two-dimensional nanomaterials: fascinating materials in biomedical field“, Sci. Bull., št. 64, str. 1707–
1727, 2019.
[9] M. Benelmekki, „Two-dimensional nanomaterials“, Nanomaterials, 2019.
[10] C. Lee, X. Wei, J. W. Kysar, in J. Hone, „Measurement of the elastic properties and intrinsic strength of monolayer graphene“, Science (80-. )., št. 321, str. 385–388, 2008.
[11] Toolbox, „Young’s modulus, TeToolbox,nsile Strength“, 2019. [Na spletu]. Dostopno:
https://www.engineeringtoolbox.com/young-modulus-d_417.html.
[12] K. S. Novoselov idr., „Two-dimensional gas of massless Dirac fermions in graphene“, Nature, št. 438, str. 197–200, 2005.
[13] S. A. Awan idr., „Transport conductivity of graphene at RF and microwave frequencies“, 2D Mater., št. 3, 2016.
[14] A. A. Balandin idr., „Superior thermal conductivity of single-layer graphene“, Nano Lett., št. 8, str. 902–907, 2008.
[15] C. Fang, J. Zhang, X. Chen, in G. J. Weng, „Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a monte carlo method“, Nanomaterials, št. 10, str. 1–15, 2020.
[16] A. J. Mannix idr., „Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs“, Science (80-. )., št. 350, str. 1513–1516, 2015.
[17] B. Feng idr., „Experimental realization of two-dimensional boron sheets“, Nat. Chem., št. 8, str. 563–568, 2016.
[18] X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, in X. C. Zeng, „Two-dimensional boron
50
monolayer sheets“, ACS Nano, št. 8, str. 7443–7453, 2012.
[19] W. Li idr., „Experimental realization of honeycomb borophene“, Sci. Bull., št. 63, str.
282–286, 2018.
[20] C. Hou, G. Tai, Z. Wu, in J. Hao, „Borophene: Current Status, Challenges and Opportunities“, Chempluschem, št. 85, str. 2186–2196, 2020.
[21] Ţ. Velišček, „Priprava in karakterizacija zlitin v sistemu litij-bor : diplomsko delo“, 2010.
[22] H. Wang, Q. Li, Y. Gao, F. Miao, X. F. Zhou, in X. G. Wan, „Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability“, New J.
Phys., št. 18, str. 1–17, 2016.
[23] B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, in H. Zhu, „The electronic, optical, and thermodynamic properties of borophene from first-principles calculations“, J. Mater.
Chem. C, št. 16, str. 3592–3598, 2016.
[24] L. Shi, T. Zhao, A. Xu, in J. Xu, „Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries“, Sci. Bull., št. 61, str. 1138–1144, 2016.
[25] H. Zhou, Y. Cai, G. Zhang, in Y. W. Zhang, „Superior lattice thermal conductance of single-layer borophene“, npj 2D Mater. Appl., št. 1, str. 1–25, 2017.
[26] R. Pranay in K. S. Tumesh, „Freestanding Borophene and Its Hybrids“, Adv. Sci., št.
31, 2019.
[27] Wikipedia, „Borophene“, 2022. [Na spletu]. Dostopno:
https://en.wikipedia.org/wiki/Borophene.
[28] P. Ranjan idr., „Freestanding Borophene and Its Hybrids“, Adv. Mater., št. 31, str. 1–8, 2019.
[29] B. Feng idr., „Dirac Fermions in Borophene“, Phys. Rev. Lett., št. 118, str. 1–6, 2017.
[30] D. Li idr., „2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties“, Adv. Funct. Mater., št. 30, str. 1–32, 2020.
[31] E. Cizel, „Sinteza in karakterizacija zlitin v sistemu Li - B : magistrsko delo“, 2017.
[32] L. Noč, Ţ. Velišček, B. Genorio, in I. Jerman, „MXene-like Borophene Pigment for High Performance Absorber Coating“, str. 600, 2014.
[33] L. Kou, T. Frauenheim, in C. Chen, „Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response“, J. Phys. Chem. Lett., št. 15, str. 2675–2681, 2014.
[34] V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, in R. Ahuja, „Toward the Realization of 2D Borophene Based Gas Sensor“, J. Phys. Chem. C, št. 121, str. 26869–26876, 2017.
[35] C. S. Huang, A. Murat, V. Babar, E. Montes, in U. Schwingenschlögl, „Adsorption of
51
the Gas Molecules NH3, NO, NO2, and CO on Borophene“, J. Phys. Chem. C, št 26, str. 14665–14670, 2018.
[36] F. Opoku in P. P. Govender, „Highly Selective and Sensitive Detection of Formaldehyde by β12-Borophene/SnO2Heterostructures: The Role of an External Electric Field and In-Plain Biaxial Strain“, J. Phys. Chem. A, št. 11, str. 2288–2300, 2020.
[37] Y. Chen idr., „Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction“, J. Am. Chem. Soc., št. 139, str.
12370–12373, 2017.
[38] Y. Singh, S. Back, in Y. Jung, „Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts“, Phys. Chem. Chem. Phys., št. 20, str. 21095–21104, 2018.
[39] L. Li, H. Zhang, in X. Cheng, „The high hydrogen storage capacities of Li-decorated borophene“, Comput. Mater. Sci., št. 137, str. 119–124, 2017.
[40] C. Ataca, E. Aktürk, S. Ciraci, in H. Ustunel, „High-capacity hydrogen storage by metallized graphene“, Appl. Phys. Lett., št. 93, str. 1–4, 2008.
[41] L. Wang, X. Chen, H. Du, Y. Yuan, H. Qu, in M. Zou, „First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene“, Appl. Surf.
Sci., št. 427, str. 1030–1037, 2018.
[42] X. Li, X. Tan, Q. Xue, in S. Smith, „Charge-controlled switchable H2 storage on conductive borophene nanosheet“, Int. J. Hydrogen Energy, št. 44, str. 20150–20157, 2019.
[43] Y. Duo idr., „Borophene-based biomedical applications: Status and future challenges“, Coord. Chem. Rev., št. 427, str. 213549, 2021.
[44] D. Rao idr., „Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries“, J. Mater. Chem. A, št. 5, str. 2328–2338, 2017.
[45] P. Liang idr., „Is borophene a suitable anode material for sodium ion battery?“, J.
Alloys Compd., št. 704, str. 152–159, 2017.
[46] E. Frackowiak, „Carbon materials for supercapacitor application“, Phys. Chem. Chem.
Phys., št. 9, str. 1774–1785, 2007.
[47] H. Li idr., „Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance“, ACS Nano, št. 12, str.
1262–1272, 2018.
[48] Z. Li idr., „2D Metal-Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications“, Adv. Energy Mater., št. 25, str. 1–13, 2021.
[49] M. A. Krishnan idr., „Graphene-based anticorrosive coatings for copper“, RSC Adv., št. 8, str. 499–507, 2018.
[50] Z. P. Yang idr., „Experimental observation of extremely weak optical scattering from
52
an interlocking carbon nanotube array“, Appl. Opt., št. 50, str. 1850–1855, 2011.
[51] Q. Liao, P. Zhang, H. Yao, H. Cheng, C. Li, in L. Qu, „Reduced Graphene Oxide–
Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance“, Adv. Sci., št. 7, 2020.
[52] J. Wu, „Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency“, J. Phys. D. Appl. Phys., št. 49, str. 215108, 2016.
[53] C. A. Bishop, Vacuum Deposition onto Webs, Films and Foils. 2011.
[54] M. Maaza, B. D. Ngom, Z. Y. Nuru, in S. Khamlich, „Surface-Interface Investigation and Stability of Cermet-Based Solar Absorbers by Grazing Angle X-Rays Reflectometry: Pt-Al2O3 Case“, Arab. J. Sci. Eng., št. 39, str. 5825–5846, 2014.
[55] Sun.org, „Black body radiation“, 2021. [Na spletu]. Dostopno:
https://www.sun.org/encyclopedia/black-body-radiation.
[56] S. E. Unit in N. Road, „Spectrally selective solar absrober coatings“, Appl. Energy, št.
2, str. 251–262, 1979.
[57] C. G. Granqvist, „Spectrally selective coatings for energy efficiency and solar applications“, št. 401.
[58] F. Cao, K. McEnaney, G. Chen, in Z. Ren, „A review of cermet-based spectrally selective solar absorbers“, Energy Environ. Sci., št. 7, str. 1615–1627, 2014.
[59] I. Jerman, M. Koţelj, in B. Orel, „The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties“, Sol. Energy Mater. Sol. Cells, št. 94, str. 232–245, 2010.
[60] F. P. Ijsseling, „Electrochemical Methods in Crevice Corrosion Testing: Report prepared for the European Federation of Corrosion Working Party ‘Physico-chemical testing methods of corrosion: Fundamentals and applications’“, Br. Corros. J., št. 15, str. 51–69, 1980.
[61] F. Zhang, K. Németh, J. Bareño, F. Dogan, I. D. Bloom, in L. L. Shaw, „Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries“, RSC Adv., št. 6, str. 27901–27914, 2016.
[62] M. S. Si in D. S. Xue, „Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations“, Phys. Rev. B - Condens. Matter Mater. Phys., št. 75, str. 1–4, 2007.
[63] N. R. Glavin idr., „Amorphous Boron Nitride: A Universal, Ultrathin Dielectric for 2D Nanoelectronics“, Adv. Funct. Mater., št. 26, str. 2640–2647, 2016.
[64] A. Griffin idr., „Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets“, Chem. Mater., št. 32, str. 2852–2862, 2020.
53
[65] O. V. Pupysheva, A. A. Farajian, C. R. Knick, A. Zhamu, in B. Z. Jang, „Modeling direct exfoliation of nanoscale graphene platelets“, J. Phys. Chem. C, št. 114, str.
21083–21087, 2010.
[66] H. Ye, B. Han, H. Chen, in L. Xu, „The liquid-exfoliation of graphene assisted with hyperbranched polyethylene-g-polyhedral oligomeric silsesquioxane copolymer and its thermal property in polydimethylsiloxane nanocomposite“, Nanotechnology, št. 30, 2019.
[67] M. Bohorquez, C. Koch, T. Trygstad, in N. Pandit, „A study of the temperature-dependent micellization of pluronic F127“, J. Colloid Interface Sci., št. 216, str. 34–40, 1999.
[68] NREL energy, „AM 1,5 terrestrial solar spectrum“, 2021.