40
6 Sklep
V okviru magistrske naloge smo uspešno sintetizirali in optimizirali sintezo spojine Z-360 ter predlagali možne strukturne spremembe na podlagi spoznanj raziskav pri spojinah z 1,4-BDZ fragmentom.
Veliko časa smo namenili reakcijskim pogojem in iskanju optimalnega postopka izolacije pri vsaki sintezni stopnji, saj so ti bili v originalnem postopku zelo slabo opisani oz.
izpuščeni.
Namen našega dela je bil dosežen, saj smo s pomočjo eksperimentalnega dela optimizirali posamezne sintezne stopnje in tako sintetizirali končno spojino zadovoljive čistote. Naša spojina je bila pomemben vmesni korak celotnega projekta na področju CCK2R antagonistov, ki bo verjetno vodila do sinteze novih radiooznačenih ligandov.
Čeprav smo zagotovili sintezo nastorazepida, je treba poudariti, da to ni edina možna sintezna pot. Prav tako ni znano, če bodo predlagani postopki uporabni pri sintezi derivatov Z-360, ki smo jih predlagali v razpravi. Ko bo znana kristalna struktura CCK2R, bo tudi lažja uporaba in silico metod za načrtovanje novih spojin. Trenutno načrtovanje temelji le na osnovi liganda, vendar je za boljše razumevanje vezave in prepoznavanje potrebnih strukturnih fragmentov, ki so bistveni za selektivno vezavo, potrebna kristalna struktura receptorja z vezanim Z-360. Tekom vseh možnih sprememb strukture je potrebno ohranjati selektivnost na CCK2R in ustrezne fizikalno-kemijske lastnosti, ki zagotavljajo ugoden farmakokinetični profil.
Čeprav je področje 1,5-BDZ antagonistov CCK2R zaenkrat zelo slabo raziskano in bo na tej temi potrebno izvesti še zajetno količino raziskav o terapevtski vrednosti selektivnih zaviralcev CCK2R kot tudi njihovi varnosti, kažejo trenutni literaturni podatki tudi na smiselnost uporabe 1,5-BDZ, v ospredju Z-360, v razvoju radiofarmakov kot vektorskih molekul.
41
7 Literatura
1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer 2018; 103: 356–
387.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 2015; 136(5):
E359–E386.
3. Hofmarcher T, Lindgren P, Wilking N, Jönsson B. The cost of cancer in Europe 2018.
European Journal of Cancer 2020; 129: 41–49.
4. Claudia A, Matsuda T, Carlo V di, Harewood R, Matz M, Bonaventura A. Global surveillance of trends in cancer survival: analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers during 2000–2014 from 322 population-based registries in 71 countries (CONCORD-3). Lancet 2018; 391(10125): 1023–
1075.
5. Wild CP, Espina C, Bauld L, Bonanni B, Brenner H, Brown K, Dillner J, Forman D, Kampman E, Nilbert M, Steindorf K, Storm H, Vineis P, Baumann M, Schüz J.
Cancer Prevention Europe. Molecular Oncology 2019; 13(3): 528–534.
6. Wayua C, Low PS. Evaluation of a cholecystokinin 2 receptor-targeted near-infrared dye for fluorescence-guided surgery of cancer. Molecular Pharmaceutics 2014; 11(2):
468–476.
7. Cholecy P. Structure of Porcine Cholecy stokinin-Pancreozymin. 1968; 6: 156–162.
8. Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiological Reviews 2006; 86(3): 805–847.
9. De Tullio P, Delarge J, Pirotte B. Therapeutic and chemical developments of cholecystokinin receptor ligands. Expert Opinion on Investigational Drugs 2000;
9(1): 129–146.
10. Makovec F, Peris W, Revel L, Giovanetti R, Mennuni L, Rovati LC.
Structure-42
Antigastrin Activity Relationships of New (R)-4-Benzamido-5-oxopentanoic Acid Derivatives. Journal of Medicinal Chemistry 1992; 35(1): 28–38.
11. Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, Roques BP.
International union of pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacological Reviews 1999; 51(4): 745–781.
12. Marco E, Foucaud M, Langer I, Escrieut C, Tikhonova IG, Fourmy D. Mechanism of activation of a G protein-coupled receptor, the human cholecystokinin-2 receptor.
Journal of Biological Chemistry 2007; 282(39): 28779–28790.
13. Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, Sexton PM. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology 2021; 19(6): 1–28.
14. Shulkes A, Baldwin GS. Biology of gut cholecystokinin and gastrin receptors.
Clinical and Experimental Pharmacology and Physiology 1997; 24(3–4): 209–216.
15. Reubi JC, Waser B, Gugger M, Friess H, Kleeff J, Kayed H, Büchler MW, Laissue JA. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue. Gastroenterology 2003; 125(1): 98–106.
16. Solcia E, Rindi G, Silini E, Villani L. Enterochromaffin-like (ECL) cells and their growths: relationships to gastrin, reduced acid secretion and gastritis. Bailliere’s Clinical Gastroenterology 1993; 7(1): 149–165.
17. Szabó I, Rumi G, Bódis B, Németh P, Mózsik G. Gastrin and pentagastrin enhance the tumour proliferation of human stable cultured gastric adenocarcinoma cells.
Journal of Physiology Paris 2000; 94(1): 71–74.
18. Smith JP, Fantaskey AP, Liu G, Zagon IS. Identification of gastrin as a growth peptide in human pancreatic cancer. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 1995; 268(1 37-1).
19. Lammertsma AA. Forward to the past: The case for quantitative PET imaging. Journal of Nuclear Medicine 2017; 58(7): 1019–1024.
43
20. Vermeulen K, Vandamme M, Bormans G, Cleeren F. Design and Challenges of Radiopharmaceuticals. Seminars in Nuclear Medicine 2019; 49(5): 339–356.
21. Thorp-Greenwood FL, Coogan MP. Multimodal radio- (PET/SPECT) and fluorescence imaging agents based on metallo-radioisotopes: Current applications and prospects for development of new agents. Journal of the Chemical Society. Dalton Transactions 2011; 40(23): 6129–6143.
22. Bailly C, Bodet-Milin C, Rousseau C, Faivre-Chauvet A, Kraeber-Bodéré F, Barbet J. Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharmacy and Chemistry 2017; 2(1).
23. Roosenburg S, Laverman P, Van Delft FL, Boerman OC. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids 2011; 41(5): 1049–1058.
24. Hou C, Hsieh CJ, Li S, Lee H, Graham TJ, Xu K, Weng CC, Doot RK, Chu W, Chakraborty SK, Dugan LL, Mintun MA, Mach RH. Development of a Positron Emission Tomography Radiotracer for Imaging Elevated Levels of Superoxide in Neuroinflammation. ACS Chemical Neuroscience 2018; 9(3): 578–586.
25. Boyce M, Lloyd KA, Pritchard DM. Potential clinical indications for a CCK2 receptor antagonist. Current Opinion in Pharmacology 2016; 31: 68–75.
26. Novak D, Anderluh M, Kolenc Peitl P. CCK2R antagonists: from SAR to clinical trials. Drug Discovery Today 2020; 25(8): 1322–1336.
27. Bock MG, DiPardo RM, Rittle KE, Evans BE, Freidinger RM, Veber DF, Chang RS, Chen TB, Keegan ME, Lotti VJ. Cholecystokinin Antagonists. Synthesis of Asperlicin Analogues with Improved Potency and Water Solubility. Journal of Medicinal Chemistry 1986; 29(10): 1941–1945.
28. Cawston EE, Lam PCH, Harikumar KG, Dong M, Ball AM, Augustine M Lou, Akgün E, Portoghese PS, Orry A, Abagyan R, Sexton PM, Miller LJ. Molecular basis for binding and subtype selectivity of 1,4-benzodiazepine antagonist ligands of the cholecystokinin receptor. Journal of Biological Chemistry 2012; 287(22): 18618–
18635.
44
29. Giardinh D, Piergentili A, Tarziaa G, Wood G, Stevenage R. Synthesis and Structure-Activity Relationship of New 1,5 Benzodiazepine CCK-B Antagonists. Perspective in Receptor Research 1996; 7: 375–387.
30. Roberts K, Ursini A, Barnaby R, Cassar PG, Corsi M, Curotto G, Donati D, Feriani A, Finizia G, Marchioro C, Niccolai D, Oliosi B, Polinelli S, Ratti E, Reggiani A, Tedesco G, Tranquillini ME, Trist DG, Van Amsterdam FTM. Synthesis and structure-activity relationship of new 1,5-dialkyl-1,5- benzodiazepines as cholecystokinin-2 receptor antagonists. Bioorganic and Medicinal Chemistry 2011;
19(14): 4257–4273.
31. Finizia G, Donati D, Oliosi B, Tranquillini ME, Ursini A. Synthesis and evaluation of novel 1,5-benzodiazepines as potent and selective CCK-B ligands. Effect of the substitution of the N-5 phenyl with alkyl groups. Bioorganic & Medicinal Chemistry Letters 1996; 6(24): 2957–2962.
32. McDonald IM. CCK 2 Receptor Antagonist. Drugs of the Future 1999; 24(5): 483–
487.
33. Aquino CJ, Armour DR, Berman JM, Birkemo LS, Carr RAE, Croom DK, Dezube M, Dougherty RW, Ervin GN, Grizzle MK, Head JE, Hirst GC, James MK, Johnson MF, Miller LJ, Queen KL, Rimele TJ, Smith DN, Sugg EE. Discovery of 1,5-benzodiazepines with peripheral cholecystokinin (CCK-A) receptor agonist activity.
1. Optimization of the agonist “trigger.” Journal of Medicinal Chemistry 1996; 39(2):
562–569.
34. Grabowska AM, Morris TM, McKenzie AJ, Kumari R, Hamano H, Emori Y, Yoshinaga K, Watson SA. Pre-clinical evaluation of a new orally-active CCK-2R antagonist, Z-360, in gastrointestinal cancer models. Regulatory Peptides 2008;
146(1–3): 46–57.
35. Wayua C, Low PS. Evaluation of a nonpeptidic ligand for imaging of cholecystokinin 2 receptor-expressing cancers. Journal of Nuclear Medicine 2015; 56(1): 113–119.
36. Kawasaki D, Emori Y, Eta R, Iino Y, Hamano H, Yoshinaga K, Tanaka T, Takei M, Watson SA. Effect of Z-360, a novel orally active CCK-2/gastrin receptor antagonist on tumor growth in human pancreatic adenocarcinoma cell lines in vivo and mode of
45
action determinations in vitro. Cancer Chemotherapy and Pharmacology 2008; 61(5):
883–892.
37. Meyer T, Caplin ME, Palmer DH, Valle JW, Larvin M, Waters JS, Coxon F, Borbath I, Peeters M, Nagano E, Kato H. A phase Ib/IIa trial to evaluate the CCK2 receptor antagonist Z-360 in combination with gemcitabine in patients with advanced pancreatic cancer. European Journal of Cancer 2010; 46(3): 526–533.
38. Fani M, Peitl P, Velikyan I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals 2017; 10(1): 1–22.
39. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. Journal of Nuclear Medicine 2017; 58: 61S-66S.
40. Novak D, Tomašič T, Krošelj M, Javornik U, Plavec J, Anderluh M, Kolenc Peitl P.
Radiolabelled CCK2R Antagonists Containing PEG Linkers: Design, Synthesis and Evaluation. ChemMedChem 2021; 16(1): 155–163.
41. Wayua C, Roy J, Putt KS, Low PS. Selective Tumor Targeting of Desacetyl Vinblastine Hydrazide and Tubulysin B via Conjugation to a Cholecystokinin 2 Receptor (CCK2R) Ligand. Molecular Pharmaceutics 2015; 12(7): 2477–2483.
42. Nicolas GP, Mansi R, McDougall L, Kaufmann J, Bouterfa H, Wild D, Fani M.
Biodistribution, pharmacokinetics, and dosimetry of 177Lu-,90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: The mass effect. Journal of Nuclear Medicine 2017; 58(9): 1435–1441.
43. Lauffer D, Mullican M. A Practical Synthesis of (S)3-tert-Butoxycarbonylamino-2-oxo- 2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic Acid Methyl Ester as a Conformationally Restricted Dipeptido-Mimetic for Caspase-1 (ICE) Inhibitors.
Bioorganic & medicinal chemistry letters 2002; 12: 1225–1227.
44. Shinozaki; K, Yoneta; T, Murata; M, Miura; N, Kiyoto Maeda. 1,5-Benzodiazepine Derivatives: US006344452B1. 2002; 53(21).
45. Shohei Kuroda, Yokohama (JP); Takuya Yamamoto, Yokohama (JP); Yuko Saeki, Yokohama (JP); Masumi Kurasawa Y (JP. Calcium salts of 1,5-benzodiazepine derivatives, process for producing the salts and drugs containing the same
46 US6747022B2. 2013; 2(12): 16.
46. Vilaivan T. A rate enhancement of tert-butoxycarbonylation of aromatic amines with Boc2O in alcoholic solvents. Tetrahedron Letters 2006; 47(38): 6739–6742.
47. Baseer MA, Khan AJ. An efficient one-pot synthesis of 1,5-benzodiazepine derivatives catalyzed by TBAB under mild conditions. E-Journal of Chemistry 2012;
9(1): 407–414.
48. Nakajima N, Ikada Y. Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjugate Chemistry 1995; 6(1): 123–130.
49. Voorhees V, Adams R. The use of the oxides of platinum for the catalytic reduction of organic compounds. I. Journal of the American Chemical Society 1922; 44(6):
1397–1405.
50. Gusak KN, Ignatovich Z V, Koroleva E V. New potential of the reductive alkylation of amines. Russian Chemical Reviews 2015; 84(3): 288–309.
51. Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Reductive Amination in the Synthesis of Pharmaceuticals. Chemical Reviews 2019; 119(23): 11857–11911.
52. Wang Z, Richter SM, Gates BD, Grieme TA. Safety concerns in a pharmaceutical manufacturing process using dimethyl sulfoxide (DMSO) as a solvent. Organic Process Research and Development 2012; 16(12): 1994–2000.
53. Yadav GD, Jadhav YB. Kinetics and modeling of liquid-liquid phase transfer catalysed synthesis of p-chlorophenyl acetonitrile: Role of co-catalyst in intensification of rates and selectivity. Journal of Molecular Catalysis A: Chemical 2003; 192(1–2): 41–52.
54. Zhang XM, Bordwell FG. Acidities and Homolytic Bond Dissociation Enthalpies (BDEs) of the Acidic H‒A Bonds in Acyclic and Cyclic Alkoxycarbonyl Compounds (Esters and Carbamates). Journal of Organic Chemistry 1994; 59(21): 6456–6458.
55. Hoffmann HMR. The Rate of Displacement of Toluene-p-sulphonate Relative to Bromide Ion. A New Mechanistic Criterion. Journal of the Chemical Society 1965:
6753–6761.
56. Nadia K, Malika B, Nawel K, MedYazid B, Zine R, Aouf NE. Simple and Efficient
47
Cleavage Reaction of the Boc Group in Heterocyclic Compounds. Journal of Heterocyclic Chemistry 2004; 41(1): 57–60.
57. Ashworth IW, Cox BG, Meyrick B. Kinetics and mechanism of N-Boc cleavage:
Evidence of a second-order dependence upon acid concentration. Journal of Organic Chemistry 2010; 75(23): 8117–8125.
58. Ghosh AK, Brindisi M. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. Journal of Medicinal Chemistry 2020; 63(6): 2751–2788.
59. Gallou I, Eriksson M, Zeng X, Senanayake C, Farina V. Practical Synthesis of Unsymmetrical Ureas from Isopropenyl Carbamates approach is particularly efficient for symmetrical ureas . synthetic efficiency is limited by the formation of symmet- rical urea side products . Another method of choice for urea form. J. Org. Chem 2005;
70(c): 6960–6963.
60. Kolb M. Synthetic communications: An international journal for rapid communication of synthetic organic chemistry. Synthetic Communications 1993;
23(1): vii.
61. Berry DJ, Digiovanna C V., Metrick SS, Murugan R. ChemInform Abstract: Catalysis by 4-Dialkylaminopyridines. ChemInform 2010; 33(45): 201–226.
62. Y. Takinami, H. Yuki, A. Nishida, S. Akuzawa, A. Uchida, Y. Takemoto, M. Ohta, M. Satoh GS& KM. YF476 is a new potent and selective gastrin \ cholecystokinin-B receptor antagonist in vitro and in vivo. Aliment Pharmacol Ther 1997; 11: 113–120.
63. Boyce M, Warrington S, Black J. Netazepide, a gastrin/CCK2 receptor antagonist, causes dose-dependent, persistent inhibition of the responses to pentagastrin in healthy subjects. British Journal of Clinical Pharmacology 2013; 76(5): 689–698.