• Rezultati Niso Bili Najdeni

0EEFMFL[BUFLTUJMOFNBUFSJBMFJOPCMJLPWBOKF'BLVMUFUB [BTUSPKOJØUWP6OJWFS[BW.BSJCPSV

N/A
N/A
Protected

Academic year: 2022

Share "0EEFMFL[BUFLTUJMOFNBUFSJBMFJOPCMJLPWBOKF'BLVMUFUB [BTUSPKOJØUWP6OJWFS[BW.BSJCPSV"

Copied!
24
0
0

Celotno besedilo

(1)

%BNKBOB$FMDBS

1

+FMLB(FSØBL

)BSSJFU.FJOBOEFS

3

1

7JTPLBØPMB[BEJ[BKO-KVCMKBOB

0EEFMFL[BUFLTUJMOFNBUFSJBMFJOPCMJLPWBOKF'BLVMUFUB [BTUSPKOJØUWP6OJWFS[BW.BSJCPSV

3

'JCSF.BUFSJBMT4DJFODF4NBSU8FBS-BC5BNQFSF 6OJWFSTJUZPG5FDIOPMPHZ'JOTLB

Vrednotenje toplotnih lastnosti tekstilij in njihovih kombinacij

Evaluation of Textile Thermal Properties and their

Combinations

Izvirni znanstveni članek

1PTMBOPdecember 2009 r4QSFKFUPfebruar 2010 0SJHJOBM4DJFOUJñD1BQFS

3FDFJWFEDecember 2009 r"DDFQUFEFebruary 2010

Vodilni avtor/corresponding author:

Damjana Celcar

UFMFNBJMEBNKBOBDFMDBS!WTETJ

*[WMFNJFL

7QSJTQFWLVKFQSFETUBWMKFOPWSFEOPUFOKFUPQMPUOJIMBTUOPTUJQMPTLJI UFLTUJMJKJOOKJIPWJILPNCJOBDJKOBNFOKFOJI[BQPTMPWOBPCMBNJJMBLJ KFQPUFLBMPWEWFIEFMJI7QSWFNEFMVTPCJMFSB[JTLBOFUPQMPUOFMB TUOPTUJQMPTLJIUFLTUJMJKPWSFEOPUFOFOBSB[MJNJOJINFSJMOJIOBQSBWBI LJPNPHPNJBKPNFSKFOKFQSFIPEBUPQMPUFJOBMJQSFIPEBWPEOFQBSF TLP[JQMPTLPUFLTUJMJKPJOTJDFSTQPNPNJKPUPQMPUOFQMPØNJFUFSNFSJM OJIOBQSBW5IFSNP-BCP**JO1FSNFUFTU7UFNEFMVSB[JTLBWFTPCJMF SB[JTLBOFQPWF[BWFNFEMBTUOPTUNJQMPTLJIUFLTUJMJKP[JSPNBPEWJ TOPTUJNFEQPTBNF[OJNJQBSBNFUSJUPQMPUOJIMBTUOPTUJBOBMJ[JSBOJI QMPTLJIUFLTUJMJKJ[NFSKFOJNJOBSB[MJNJOJINFSJMOJIOBQSBWBIUFSPE WJTOPTUJNFEUPQMPUOJNJMBTUOPTUNJJOEFCFMJOPUFLTUJMJKF7ESVHFN EFMVSB[JTLBWFTPCJMFSB[JTLBOFUPQMPUOFMBTUOPTUJLPNCJOBDJKQPTB NF[OJIQMPTLJIUFLTUJMJKJOTJDFSTQPNPNJKPUPQMPUOFHBDJMJOESBTTJ NVMBDJKP[OPKFOKBLJPNPHPNJBNFSKFOKFQSFIPEBUPQMPUFJOQSFIP EBWPEOFQBSFTLP[JUFLTUJMJKFBMJLPNCJOBDJKPUFLTUJMJK;BUBOBNFO KFCJMSB[JTLBOWQMJWLMJNBUTLJISB[NFSJOTUPQOKF[OPKFOKBOBUPQMP UOFMBTUOPTUJQPTBNF[OJILPNCJOBDJKQMPTLJIUFLTUJMJK

3B[JTLBWBKFQPLB[BMBEBNFEQBSBNFUSJUPQMPUOFHBVQPSBJ[NFSKF OFHBTUPQMPUOPQMPØNJPUFSNFSJMOJNBOBQSBWBNB1FSNFUFTUJO5IFS NP -BCP ** PCTUBKBKP TUBUJTUJNJOP QPNFNCOF LPSFMBDJKF JO EB NFE UPQMPUOJN VQPSPN EPMPNJFOJN J[ LWPDJFOUB EFCFMJOF JO UPQMPUOF QSFWPEOPTUJEPCMKFOF[NFSJMOPOBQSBWP5IFSNP-BCP**UFSUPQMP UOJN VQPSPN EPCMKFOJN T UPQMPUOP QMPØNJP JO [ NFSJMOP OBQSBWP 1FSNFUFTUQSBWUBLPPCTUBKBLPSFMBDJKB1PUSKFOPKFEBTF[OBSBØNJB KPNJPEFCFMJOPNBUFSJBMBWSFEOPTUJUPQMPUOFHBVQPSBJOVQPSBQSPUJ QSFIPEVWPEOFQBSFQMPTLJIUFLTUJMJKQPWFNJVKFKP)LSBUJKFCJMPVHP UPWMKFOPEBSB[MJNJOFLMJNBUTLFSB[NFSFJOTUPQOKF[OPKFOKBWQMJWBKP OBUPQMPUOFMBTUOPTUJLPNCJOBDJKQMPTLJIUFLTUJMJK6HPUPWMKFOPKFCJMP Abstract

The paper presents the evaluation of textile material thermal properties and their com- binations as used for business clothing sys- tems, which was conducted through two sepa- rate studies. In the first study, an investigation of textile thermal properties was carried out using different measurement systems enabling the measuring of heat and/or moisture trans- mission through textile materials by using the hot-plate apparatus, the Thermo Labo II and the Permetest measurement systems. This part of the research investigated the correlations be- tween the measured parameters of the textile thermal properties evaluated by using differ- ent measurement systems, and correlations be- tween thickness and thermal properties. In the second study, the thermal properties of material combinations were evaluated by using a ther- mal sweating cylinder enabling the evaluation of heat and moisture transmission through tex- tile materials or material combinations. The in- fluences of different environmental conditions and sweating levels on the thermal properties of material combinations were investigated for this purpose.

(2)

EBTPUPQMPUOFMBTUOPTUJUKTVIJJOFWBQPSBUJWOJUPQMPUOJUPLUFSTQP TPCOPTUQSFIPEBWPEOFQBSFPEWJTOFPELMJNBUTLJISB[NFSP[JSPNB UFNQFSBUVSOFHBHSBEJFOUBNFEQPWSØJOPDJMJOESBJOUFNQFSBUVSP[SB LBJOEBTF[SB[MJNJOPTUPQOKP[OPKFOKBWSFEOPTUJFWBQPSBUJWOFHBUP QMPUOFHBUPLBLPSJHJSBOFHBUPQMPUOFHBVQPSBJOTQPTPCOPTUJQSFIP EBWPEOFQBSFTQSFNFOJKP

,MKVNJOFCFTFEFQMPTLFUFLTUJMJKFUPQMPUOFMBTUOPTUJUPQMPUOPVEP CKFUPQMPUOBQMPØNJB5IFSNP-BCP**1FSNFUFTUUPQMPUOJDJMJOEFST TJNVMBDJKP[OPKFOKB

6WPE

5PQMPUOFMBTUOPTUJQMPTLJIUFLTUJMJKJOJ[OKJIJ[EFMBOBPCMBʊJMBLJTP OBNFOKFOB[BESäFWBOKVUPQMPUFJOQSFOPTVWMBHFTQPWSÝJOFʊMPWF- ÝLFHB UFMFTB W PLPMJDP TP QPNFNCOF NFSTLF WFMJʊJOF UPQMPUOFHB VEPCKBQSJOPÝFOKVPCMBʊJM/BUPQMPUOPVEPCKFQSJOPÝFOKVPCMBʊJM QBSB[FOUPQMPUOJIMBTUOPTUJWQMJWBKPUVEJLMJNBUTLJQBSBNFUSJUPQMP- UOFHBPLPMKBUKUFNQFSBUVSB[SBLBJOUFNQFSBUVSBTFWBOKB PLPMJÝLJI QPWSÝJOWPLPMKVSFMBUJWOBWMBäOPTU[SBLBJOIJUSPTUHJCBOKB[SBLB LBLPSUVEJQSPJ[WPEOKBUPQMPUFJOWMBHFWUFMFTVUFSESVHJQBSBNFUSJ CBSWBUFMFTOBJOEVÝFWOBBLUJWOPTUJUE;BEPTFHBOKFVTUSF[OFHB UPQMPUOFHBVEPCKBQSJOPÝFOKVPCMBʊJMNPSBUPSFKPCTUBKBUJEJOBNJʊ - OPSBWOPUFäKFNFEQSPJ[WFEFOPUPQMPUPJOUPQMPUPPEEBOPWPLP - MKF<>

;BWSFEOPUFOKFUPQMPUOJIMBTUOPTUJUKQSFIPEBUPQMPUFJOWMBHFTLP - [JQMPTLFUFLTUJMJKFPCTUBKBKPÝUFWJMOFMBCPSBUPSJKTLFNFUPEFLJWFʊJ - OPNBPNPHPʊBKPEPMPʊBOKFTBNPFOFMBTUOPTUJBMJUPQMPUOFHBVQP- SBBMJVQPSBQSPUJQSFIPEVWPEOFQBSFTLP[JW[PSFDQMPTLFUFLTUJMJKF /BKCPMK[OBOBJOOBKQPHPTUFKFVQPSBCMKFOBNFSJMOBOBQSBWBLJPNP - HPʊBNFSKFOKFQSFIPEBUPQMPUFJOWPEOFQBSFTLP[JQPWSÝJOPQMPTLF UFLTUJMJKFWIPSJ[POUBMOFNQPMPäBKVKFUPQMPUOJNPEFMʊMPWFÝLFLPäF BMJUJLPäOJNPEFM <>;BEPMPʊBOKFUPQMPUOJIMBTUOPTUJQMPTLJIUF - LTUJMJKKFQPMFHLPäOFHBNPEFMBVQPSBCOJIWFʊNFSJMOJIOBQSBWLJTP QSFENFUÝUFWJMOJISB[JTLBWTBKTPUPQMPUOFMBTUOPTUJQPNFNCOFWFMJ- ʊJOFWSFEOPUFOKBUPQMPUOFHBVEPCKBQSJOPÝFOKVPCMBʊJM5BLPKFWMJ - UFSBUVSJNPHPʊF[BTMFEJUJQSJTQFWLFLJUFNFMKJKPOBWSFEOPUFOKVUP - QMPUOJIMBTUOPTUJQMPTLJIUFLTUJMJKJOOKJIPWJILPNCJOBDJK<o>

7 QSJTQFWLV TP QSFETUBWMKFOJ J[TMFELJ SB[JTLBWF WSFEOPUFOKB UP- QMPUOJI MBTUOPTUJ QMPTLJI UFLTUJMJK JO OKJIPWJI LPNCJOBDJK OBNF - OKFOJI[BNPÝLBQPTMPWOBPCMBʊJMBLJKFQPUFLBMBWEWFIEFMJI7 QSWFNEFMVSB[JTLBWFTPSB[JTLBOFUPQMPUOFMBTUOPTUJQMPTLJIUFLT- UJMJKPWSFEOPUFOFTQPNPʊKPUPQMPUOFQMPÝʊFUFSNFSJMOJNBOBQSB - WBNBćFSNP-BCP**JO1FSNFUFTUUFSQPWF[BWFNFEUPQMPUOJN VQPSPNQMPTLJIUFLTUJMJKJ[NFSKFOJNOBPNFOKFOJINFSJMOJIOB - QSBWBI)LSBUJKFSB[JTLBOBUVEJPEWJTOPTUNFEUPQMPUOJNVQPSPN JOVQPSPNQSPUJQSFIPEVWPEOFQBSFUFSEFCFMJOPUFLTUJMJKF7ESV - HFNEFMVTPQSPVʊFOFUPQMPUOFMBTUOPTUJLPNCJOBDJKVQPSBCMKFOJI QMPTLJI UFLTUJMJK LJ TJNVMJSBKP PCMBʊJMOF TJTUFNF QPTMPWOJI PCMB-

The results show that statistically significant correlations exist between the parameters of textile thermal resistances evaluated with dif- ferent measurement systems using the hot-plate apparatus, the Thermo Labo II and the Per- metest measurement systems. It is also evident from the results that by increasing textile thick- nesses, the values of textile thermal resistances and water vapour resistance increase propor- tionally. The results of evaluating thermal prop- erties of material combinations under different environmental and sweating conditions showed that different climate conditions and sweating levels influence the heat and moisture transmis- sion properties of material combinations. The results show that dry and evaporative heat loss and water vapour transmission depend on cli- matic conditions or temperature gradient, re- spectively, between the cylinder surface and ambient temperature, and that different sweat- ing levels influence the evaporative heat loss, corrected thermal resistance and water vapour transmission values.

Keywords: textiles, thermal properties, thermal comfort, hot plate, Thermo Labo II, Permetest, thermal sweating cylinder

1 Introduction

The thermal properties of clothing materials which display the ability of transporting heat and moisture from the human body surface into the environment are the dominant deter- minants of clothing thermal comfort. The met- abolic heat and humidity produced by the hu- man body, and the environmental parameters (i.e. air and radiant temperature, relative hu- midity and wind velocity) are also the param- eters quantifying the clothing thermal comfort.

Moreover, numerous other factors, e.g. colour, person’s physical and psychological state, influ- ence the transfer of energy and the feeling of comfort. In order to obtain good thermal com- fort, there must be a balance between the heat production and heat dissipation [1, 2].

A variety of laboratory methods is available for determining the heat and moisture trans- mission properties of clothing materials. These laboratory tests are usually performed by using

(3)

ʊJMPWSFEOPUFOFTQPNPʊKPUPQMPUOFHBDJMJOESBTTJNVMBDJKP[OPKF - OKB,PNCJOBDJKFVQPSBCMKFOJIUFLTUJMJKLJTJNVMJSBKPJOTMPKOJ PCMBʊJMOJTJTUFNTPCJMFEPMPʊFOFHMFEFOBOBNFNCOPTUQPTBNF - [OFHBTMPKBWPCMBʊJMOFNTJTUFNVNPÝLFHBQPTMPWOFHBPCMBʊJMB;B UBOBNFOKFCJMSB[JTLBOWQMJWLMJNBUTLJISB[NFSJOTUPQOKF[OPKF- OKBOBUPQMPUOFMBTUOPTUJQPTBNF[OJILPNCJOBDJKQMPTLJIUFLTUJMJK LJTJNVMJSBKPPCMBʊJMOJTJTUFN

7SFEOPUFOKFUPQMPUOJIMBTUOPTUJUFLTUJMJK

5PQMPUOF MBTUOPTUJ QMPTLJI UFLTUJMJK TP QPNFNCOF WFMJʊJOF UPQMP- UOFHBVEPCKBQSJOPÝFOKVPCMBʊJM.FSTLJWFMJʊJOJLJTUBPESB[UFI sposobnosti, sta toplotni upor in upor tekstilij proti prehodu vo- EOFQBSF<>5PQMPUOJVQPSQMPTLFUFLTUJMJKFKFWFMJʊJOBLJQPWF LBLP EPCSP UFLTUJMJKB WBSVKF QSFE ʊF[NFSOP J[HVCP UPQMPUF VQPS tekstilije proti prehodu vodne pare pa določa sposobnost tekstili- KFEBJ[QBSFMJ[OPKP[JSPNBWPEOPQBSPQSFOFTFTQPWSÝJOFLPäF WPLPMKF5PQPNFOJEBKFWIMBEOFNPLPMKVOBKQPNFNCOFKÝBMB- stnost ustrezen toplotni upor, ki varuje pred izgubo toplote, v to- QMFNPLPMKVP[JSPNBWSB[NFSBILPTF[OPKFOKVOFNPSFNPJ[P - HOJUJQBQPTUBOFQPNFNCFOEFKBWOJLVQPSQSPUJQSFIPEVWPEOF QBSF5BEWBQBSBNFUSBTUBWQSPDFTVJ[NFOKBWFUPQMPUFUVEJFEJOJ WFMJʊJOJOBLBUFSJMBILPʊMPWFLWWFMJLJNFSJWQMJWB[J[CJSPQSBWJM - OFLPNCJOBDJKFQMPTLJIUFLTUJMJKLJTFTUBWMKBKPPCMBʊJMOJTJTUFN"MJ EBOBLPNCJOBDJKBUFLTUJMJKWPCMBʊJMOFNTJTUFNVQPEQJSBĕ[JPMPÝLF GVOLDJKFPSHBOJ[NBBMJOFKFUPSFKPEWJTOPPEOKFOJIUPQMPUOJIMB - TUOPTUJ<>

1SPDFTJ[NFOKBWFP[JSPNBQSFOPTBUPQMPUFTLP[JLPNCJOBDJKPUF- LTUJMJKLJTFTUBWMKBKPPCMBʊJMOJTJTUFNWPLPMKFKFTFTUBWMKFOJ[QSP - DFTBQSFOPTBUPQMPUFTQPWSÝJOFLPäFTLP[JPCMBʊJMPLJKFTFTUBWMKFO iz suhega toplotnega toka ϕ

c

JOFWBQPSBUJWOFHB J[QBSJMOFHBWMB - äOFHBUPQMPUOFHBUPLBϕ

e

<>,PMJʊJOBTVIFUPQMPUFLJKPPE- EBKBUFMPKFPEWJTOBPESB[MJLFNFETSFEOKPUFNQFSBUVSPLPäFJO UFNQFSBUVSP[SBLBPEWFMJLPTUJQPWSÝJOFPCMBʊJMBTLP[JLBUFSPQSF - IBKBUPQMPUBUFSPEUPQMPUOFHBVQPSBPCMBʊJMBɇJNWFʊKBKFSB[MJLB NFEUFNQFSBUVSBNBUFNWFʊKJKFTVIJUPQMPUOJUPLTQPWSÝJOFLPäF WPLPMJDP'J[JLBMOPHMFEBOPKFTVIJUPQMPUOJUPLLPMJʊJOBUPQMPUF LJKPUFMPWUPQMPUOFNTUJLVPEEBTQSFKNFWʊBTPWOJFOPUJ&OBʊJTF [PEEBKBOKFNUPQMPUFLJHBPEEBKBHSFMOPUFMPQSJTPCOJUFNQFSB- UVSJ(SFMOPUFMPEBKFQSBWUBLPLPULPäBTQSFWBKBOKFNUPQMPUFJO LPOWFLDJKFLBLPSUVEJTTFWBOKFNTWPKPUPQMPUPWPLPMJÝLJ[SBL;B TVIJUPQMPUOJUPLWFMKBTQMPÝOJJ[SB[<>

ϕ

c

= ————————— T –

s

– T

a

¨ A

R

c

(1)

kjer je:

ϕ

c

oTVIJUPQMPUOJUPL<8>

small pieces of fabric. Most of them require flat samples and are concerned with only one prop- erty, either the resistance to dry heat loss or wa- ter vapour transmission. The best known and commonly used physical test is the Hohenstein Skin Model [3], which allows the measurements of simultaneous dry and evaporative heat loss through horizontally-placed textile materials. A few other methods exist for testing the heat and/

or moisture transmission through textile mate- rials and have been of great interest to research- ers, since thermal properties are among the ma- jor characteristics determining clothing thermal comfort. It is thus possible to find papers in the literature which focus on the evaluation of tex- tile material thermal properties [4‒18].

The research work presented in this paper sum- marizes the results of two separate studies con- cerned with the laboratory measurements of heat and water vapour transfer through cloth- ing materials, and their combinations, as used for male business clothing. The first study presents the results of textile thermal proper- ties evaluated by using the hot-plate apparatus, the Thermo Labo II and the Permetest meas- urement system. The correlations between the thermal properties measured using different test methods were evaluated in this part of the re- search, as well as the correlations between the thermal properties and thicknesses of the used fabrics. The second study presents the results for thermal properties of different clothing materi- al combinations that simulate the male business clothing system. The combinations of clothing materials which simulate 4-layer and 6-layer clothing systems were defined upon the usabil- ity purpose of separate clothing layers in male business clothing system. The influences of dif- ferent climatic conditions and sweating levels on the thermal properties of clothing material combinations were evaluated by using a ther- mal sweating cylinder.

2 The Evaluation of Textile Thermal Properties

The heat and water vapour transfer properties of textile materials are the dominant determi- nants for thermal comfort regarding the wearer and are essentially determined by the thermal

(4)

T –

s

oTSFEOKBUFNQFSBUVSBLPäF<,>

T

a

oUFNQFSBUVSB[SBLBWPLPMJDJ<,>

"oQPWSÝJOBTLP[JLBUFSPQSFIBKBUPQMPUB<N

>

R

c

oUPQMPUOJVQPSUFLTUJMJKFP[JSPNBPCMBʊJMB<N

,8

o

>

*[TMJLFKFWJEFUJEBKFTLVQOJUPQMPUOJVQPSUFLTUJMJKFLJKFWTUJLV TQPWSÝJOPLPäFTFÝUFWFLSB[MJʊOJILPNQPOFOUWTFIQSPDFTPWTLB - UFSJNJTFQSFOBÝBUPQMPUBTQPWSÝJOFUFMFTBTLP[JPCMBʊJMPWPLPMJDP LPOEVLDJKBBMJQSFWBKBOKFUPQMPUFLPOWFLDJKBJOTFWBOKFBMJSBEJB - DJKB<>7WSPʊFNJOTVIFNPLPMKVKFOBKQPNFNCOFKÝJUFSNPSF - HVMBDJKTLJQSPDFTJ[MPʊBOKF[OPKBQSJʊFNFSTFQPWFʊBQBSOJUMBLOB QPWSÝJOJLPäFJOTUFNQPSBCBUPQMPUF[BJ[IMBQFWBOKF[OPKB;OPK LJJ[IMBQFWBOBQPWSÝJOJLPäFQPUVKFPELPäFTLP[JPCMBʊJMPWPLP - MJÝLJ[SBL[BSBEJSB[MJLFUMBLBWPEOFQBSFOBQPWSÝJOJLPäF p

s

JO UMBLBWPEOFQBSFWPLPMJÝLFN[SBLV p

a

&WBQPSBUJWOJUPQMPUOJUPL ϕ

e

LJKFPEWJTFOPEWFMJLPTUJQPWSÝJOFTLP[JLBUFSPQSFIBKBUPQMPUOJ tok, razlike tlakov (p

s

– p

a

) in toplotnega upora oblačila proti pre- IPEVWPEOFQBSFKFQPEBO[J[SB[PN<>

p –

s

– p

a

¨ A R

e

ϕ

e

= —————————

kjer je:

ϕ

e

oFWBQPSBUJWOJUPQMPUOJUPL<8>

p –

s

oTSFEOKJQBSDJBMOJUMBLWPEOFQBSFOBQPWSÝJOJLPäF<1B>

p

a

oQBSDJBMOJUMBLWPEOFQBSFWPLPMJÝLFN[SBLV<1B>

" oQPWSÝJOBTLP[JLBUFSPQSFIBKBFWBQPSBUJWOJUPQMPUOJUPL<N

>

R

e

o VQPS UFLTUJMJKF P[JSPNB PCMBʊJMB QSPUJ QSFIPEV WPEOF QBSF

<1BN

W

o

>

7SFEOPUFOKF UPQMPUOJI MBTUOPTUJ QMPTLJI UFLTUJMJK TF J[WBKB OB SB[ - MJʊOJI NFSJMOJI OBQSBWBI LJ TJNVMJSBKP QSFIPE UPQMPUF JOBMJ WP- Figure 1: Schematic representation of dry heat transmission through one layer of textile material [18]

and water vapour resistance [18]. The ther- mal resistance of a fabric represents a quanti- tative evaluation of how well the fabric provides a thermal barrier for the wearer. This means that the thermal resistance is an important pa- rameter in cold environments, since it provides protection against thermal loss. The water va- pour resistance of the fabric is a critical proper- ty for a clothing system, which must maintain the human body at the thermal equilibrium of the wearer. Clothing as an intermediate medi- um between the skin and the ambient condi- tions allows with the high water vapour per- meability the human body to cool due to the evaporation. At high activity levels or in hot en- vironments, the thermal resistance value alone is inadequate for characterizing and comparing clothing systems. The evaporation of sweat be- comes an important avenue for heat loss. In ad- dition, high water vapour permeability is of im- portance in cold environments, for it minimizes water accumulation in clothing, which leads to an increasing sense of discomfort. Therefore, both the thermal and water vapour resistanc- es of fabrics are required in order to assess any heat exchange between the human body and the environment, and are related to human per- ceptions of comfort [19].

The process of heat transfer from the body into the environment through clothing materials is combined with heat transmission from the skin, which is considered to be the sum of the dry heat loss (ϕc) and the evaporative heat loss (ϕe) [1, 12]. The quantity of dry heat loss lost from the body depends on the difference between the mean skin temperature and ambient tempera- ture of the clothing surface area, and the thermal resistance of the clothing. The greater the differ- ence between the temperatures, the larger the dry heat loss from the skin into the environment.

The dry heat loss is calculated with [1], equation 1, where:

ϕc – dry heat loss [W], T–

s – mean skin temperature [K], Ta – ambient temperature [K], A – surface area [m2],

Rc – thermal resistance of textile material or clothing [m2KW–1].

As shown schematically in Figure 1, the total thermal resistance (Rc,total) of a single textile ma-

(5)

EOFQBSFTLP[JQMPTLFUFLTUJMJKF7FʊJOBOBQSBWPNPHPʊBEPMPʊBOKF TBNPFOFMBTUOPTUJBMJUPQMPUOFHBVQPSBBMJVQPSBQSPUJQSFIPEVWP- EOFQBSF;BNFSKFOKFUPQMPUOJIMBTUOPTUJQMPTLJIUFLTUJMJKTFOBKQP - HPTUFKFVQPSBCMKBUJLPäOJNPEFM OFN Hautmodell, BOHM Skin mo- del<>LJPNPHPʊBNFSKFOKFQSFIPEBUPQMPUFJOQSFIPEBWPEOF QBSFTLP[JQPWSÝJOPQMPTLFUFLTUJMJKF1PMFHUJLPäOFHBNPEFMBTF[B WSFEOPUFOKFUPQMPUOJIMBTUOPTUJQMPTLJIUFLTUJMJKVQPSBCMKBKPÝFOBTMF - EOKFNFSJMOFOBQSBWF

UPQMPUOJDJMJOEFSTTJNVMBDJKP[OPKFOKB BOHM

– Thermal sweating

cylinder LJPNPHPʊBEPMPʊBOKFUPQMPUOFHBVQPSBLPSJHJSBOF - ga toplotnega upora, evaporativnega toplotnega toka in sposob- OPTUJQSFIPEBWPEOFQBSFTLP[JQMPTLPUFLTUJMJKPBMJLPNCJOBDJ- KPUFLTUJMJK<>

NFSJMOB OBQSBWB ćFSNP -BCP ** LJ PNPHPʊB EPMPʊBOKF –

UPQMPUOJIMBTUOPTUJQMPTLJIUFLTUJMJKLPUTPUJUPQMPIMBEFOPC - ʊVUFL BOHM Warm-cool feelingUPQMPUOBQSFWPEOPTUUPQMPUOJ VQPSVQPSQSPUJQSFIPEVWPEOFQBSFJOLPFĕDJFOUPISBOKBOKB UPQMPUF<>

UPQMPUOBQMPÝʊB BOHM

– Guarded hot plate apparatusLJPNPHP-

ča določanje toplotnega upora in toplotne prevodnosti ploskih UFLTUJMJKBMJLPNCJOBDJKUFLTUJMJK<>

NFSJMOB OBQSBWB "MBNCFUB LJ PNPHPʊB EPMPʊBOKF UPQMPUOJI –

MBTUOPTUJ QMPTLJI UFLTUJMJK LPU TP U J UPQMPIMBEFO PCʊVUFL toplotni upor, toplotna prevodnost, toplotna vpojnost in vpoj- OPTUWPEOFQBSF<>JO

NFSJMOB OBQSBWB 1FSNFUFTU LJ PNPHPʊB EPMPʊBOKF UPQMPUOF- –

ga upora in upora proti prehodu vodne pare ploskih tekstilij ali PCMBʊJM<>JUE

&LTQFSJNFOUBMOJEFM

3B[JTLBWBUPQMPUOJIMBTUOPTUJQMPTLJIUFLTUJMJKJOOKJIPWJILPNCJOB- DJKKFCJMBSB[EFMKFOBOBEWBEFMB1SWJKFUFNFMKJMOBSB[JTLBWBIUPQMP - UOJIMBTUOPTUJUFLTUJMJKPWSFEOPUFOJIOBSB[MJʊOJINFSJMOJIOBQSBWBI UFSSB[JTLBWJPTUBMJITQMPÝOJIMBTUOPTUJEFTFUJISB[MJʊOJIUFLTUJMJKOB- NFOKFOJI[BNPÝLBQPTMPWOBPCMBʊJMBLJTPCJMFEPMPʊFOFWTUBOEBS - EOJISB[NFSBIUFTUJSBOKBQP[BIUFWBITUBOEBSEPWLPUTP

EFCFMJOBQMPTLJIUFLTUJMJK

– h QP[BIUFWBITUBOEBSEB*40

<>JONBTB 8QP*40<>

[SBʊOBQSFQVTUOPTU

– Q

air

QP[BIUFWBITUBOEBSEB*40

<>

UPQMPUOJVQPS

– R

ct

JOUPQMPUOBQSFWPEOPTU ϩEPMPʊFOBTUPQMPU- OPQMPÝʊPQP[BIUFWBITUBOEBSEB*40<>

VQPSQSPUJQSFIPEVWPEOFQBSF

– R

et

JOUPQMPUOJVQPS R

ct

EPMP - ʊFOBTQPNPʊKPOBQSBWF1FSNFUFTU<>

toplotni upor tekstilije (

R

ct

), toplo-hladni občutek (q

max

), toplot- na prevodnost ( ϩ ) ter koeficient sposobnosti ohranjanja toplote (α) so bile določene s pomočjo merilnega sistema Thermo Labo II [21],

terial which is in direct contact with the skin is made up of different components relating to physical mechanisms (i.e. conduction, convec- tion and radiation) [18]. The most important thermoregulation process in hot and dry envi- ronments is the evaporation of sweat, where wa- ter vapour pressure increases on the skin surface and thus causes evaporative heat losses. Due to the differences in water vapour pressure on the skin surface (ps) and in the environment (pa), the sweat evaporates from the skin surface and dif- fuses through the clothing into the environment as water vapour. The evaporative heat loss (φe) depends on the surface area, water vapour pres- sure difference (ps – pa) and water vapour resist- ance of the clothing material, and is calculated with [1], equation 2, where:

ϕe – evaporative heat loss [W], p—

s – mean water vapour pressure on skin [Pa], pa – water vapour pressure of ambient [Pa], A – surface area [m2],

Re – water vapour resistance of textile material or clothing [Pa×m2W–1].

There are several testing methods for estimat- ing the thermal properties of textile materials.

For physical tests, a device is used for simulat- ing the skin heat and/or water vapour produc- tion and can be performed either on textile ma- terials or completed clothing systems. Most tests are concerned with only one property, i.e. the resistance to dry heat loss or to water vapour transmission. The commonly used physical test is a standard testing method using a sweat- ing guarded hot-plate instrument (Hautmod- ell, Skin model) [3, 19], which enables the meas- urements of simultaneous dry and evaporative heat loss through horizontally-placed textile materials. Some of the other methods for testing the heat and/or moisture transmission through textile materials are:

– thermal sweating cylinder that enables the evaluation of thermal resistance, corrected thermal resistance, and heat and water va- pour transmission through textile materials or material combinations [12],

– Thermo Labo II measurement system that en- ables the evaluation of the following textile thermal properties: warm-cool feeling, thermal conductivity, thermal resistance, water vapour resistance and heat-keeping property [21],

(6)

QSFQVTUOPTU WPEOF QBSF

– WVT EPMPʊFOB QP NFUPEJ (PSF

"TTPDJBUFT *OD <> NPEJĕDJSBOJ QP BNFSJÝLFN TUBOEBSEV

"45.&

7QSFHMFEOJDJTPQPEBOJSF[VMUBUJTQMPÝOJIMBTUOPTUJVQPSBCMKFOJI UFLTUJMJKLJTPEFMPNBPCKBWMKFOJW$FMDBSFUBM<>

Table 1: Description of test materials and their basic properties

'BCSJD

TBNQMF $MPUIJOHTZTUFN

layer 'BCSJDDPOUFOU

Weight ćJDLOFTT "JS QFSNFBCJMJUZ 8HN

o

h

NN Q

air

MN

o

s

o

5, .BMFTVJU 80

5, .BMFTVJU 801"

5, .BMFTVJU 80&-

5, Shirt $01&4

5, Coat 84

5, Suit liner $7

5, Coat liner $7

5, 6OEFSXFBS $0

5, Suit liner

TUMBZFS$7

OEMBZFS0VUMBTU¥"DSZJMXJUI

1$.T

5, .BMFTVJU 0VUMBTU¥"DSZJMXJUI1$.T

80&-

1) Thickness at pressure 0.069 gfcm–2 (1 gf = 0.9807 cN ≈ 1 cN)

%SVHJ EFM KF UFNFMKJM OB SB[JTLBWBI UPQMPUOJI MBTUOPTUJ LPNCJOB - DJKWQSWFNEFMVSB[JTLBWFVQPSBCMKFOJIQMPTLJIUFLTUJMJKLJTJNV- MJSBKPPCMBʊJMOJTJTUFN;BUBOBNFOKFCJMPEPMPʊFOJISB[MJʊOJI LPNCJOBDJKQMPTLJIUFLTUJMJK QSFHMFEOJDBLJTPCJMFPWSFEOPUF - OFTQPNPʊKPUPQMPUOFHBDJMJOESBTTJNVMBDJKP[OPKFOKBJOTJDFSQSJ USFISB[MJʊOJIUFNQFSBUVSBI[SBLB ¡$¡$JOo¡$JOEWFI TUPQOKBI [OPKFOKB JO HN

o

h

o

,PNCJOBDJKF VQPSBCMKF - OJIQMPTLJIUFLTUJMJKLJTJNVMJSBKPJOTMPKOJPCMBʊJMOJTJTUFNTP CJMFEPMPʊFOFHMFEFOBOBNFNCOPTUQPTBNF[OFHBTMPKBWPCMBʊJM- OFNTJTUFNVNPÝLFHBQPTMPWOFHBPCMBʊJMB0TFNLPNCJOBDJKQMP - TLJIUFLTUJMJKLJTJNVMJSBKPTMPKOJPCMBʊJMOJTJTUFN LPNCJOBDJKF[

P[OBLPDEPDKFCJMPTFTUBWMKFOJIJ[UFLTUJMJKF[BTQPEOKFQFSJMP NPÝLPTSBKDPJOQPEMPäFOPNPÝLPPCMFLP TFTUBWMKFOPJ[TQPEOKF- HBTMPKBoQPEMPHFJOWSIOKFHBTMPKBoULBOJOF[BNPÝLPPCMFLP5F SB[JTLBWFTPCJMFJ[WFEFOFWUPQMFNJOIMBEOFNPLPMKVQSJEWFILMJ - NBUTLJIQPHPKJIJOEWFITUPQOKBI[OPKFOKB JOHN

o

h

o

JO

guarded hot-plate apparatus that enables the –

evaluation of thermal resistance and thermal conductivity of textile materials [22], Alambeta measurement system that enables –

the evaluation of the following thermal prop- erties: warm-cool feeling, thermal resistance,

thermal conductivity, thermal absorptiveness and moisture absorptiveness [8], and Permetest measurement system that enables –

the evaluation of thermal resistance and the water vapour resistance of textile materials or clothing [20].

3 Experimental

The experimental part of this research work was divided into two studies. The first study of the experimental work included the investigations of textile thermal properties evaluated with dif- ferent measurement systems and the investiga- tions of the basic properties of textiles used in male business clothing. Table 1 shows a review

(7)

TJDFSQSJUFNQFSBUVSJ[SBLB¡$JO¡$UFSPETUPUOJSFMBUJWOJ [SBʊOJWMBäOPTUJJOIJUSPTUJHJCBOKB[SBLBNT

o

1SFPTUBMJIPTFN LPNCJOBDJKQMPTLJIUFLTUJMJK LPNCJOBDJKF[P[OBLPDEPDLJ TJNVMJSBKP TMPKOJ PCMBʊJMOJ TJTUFN KF CJMP TFTUBWMKFOJI J[ UFLTUJ - MJKF [B TQPEOKF QFSJMP NPÝLP TSBKDP JO QPEMPäFOP NPÝLP PCMFLP TFTUBWMKFOPJ[TQPEOKFHBTMPKBoQPEMPHFJOWSIOKFHBTMPKBoULB - OJOF[BNPÝLPPCMFLPUFSUFLTUJMJKF[BNPÝLJQPEMPäFOQMBÝʊ TF - stavljen iz spodnjega sloja – podloge in vrhnjega sloja – tkanine za NPÝLJQMBÝʊ3B[JTLBWFTMPKOJIPCMBʊJMOJITJTUFNPWTPCJMFJ[WF- EFOFWIMBEOFNJONS[MFNPLPMKVQSJEWFILMJNBUTLJIQPHPKJIJO EWFITUPQOKBI[OPKFOKB JOHN

o

h

o

JOTJDFSQSJUFNQF - SBUVSJ[SBLB¡$JOPETUPUOJSFMBUJWOJ[SBʊOJWMBäOPTUJUFSQSJ UFNQFSBUVSJ[SBLBo¡$JOIJUSPTUJHJCBOKB[SBLBNT

o

;BOB - UBOʊOPTUNFSJUFWTUBCJMJJ[WFEFOJEWFNFSJUWJQSJPETUPUOFNPE - TUPQBOKVQBÝFEPEBUOPFOBP[JSPNBEWF[BBOBMJ[PQPOPWMKJWPTUJ NFSJUFW1SJWTFILPNCJOBDJKBIQMPTLJIUFLTUJMJKLJTPTJNVMJSB- MFPCMBʊJMOJTJTUFNKFCJM[BTQPEOKFQFSJMPUFSNPÝLPTSBKDPVQPSB - CMKFOFOBLNBUFSJBM

Table 2: Tested material combinations

Clothing layer

Fabric sample

Combinations

D D D D D D D D D D D D D D D D

6OEFSXFBS 5, * * * * * * * * * * * * * * * *

Shirt 5, * * * * * * * * * * * * * * * *

-JOFS 5, * * * * * * * *

5, * * * * * * * *

.BMFTVJU

5, * * * *

5, * * * *

5, * * * *

5, * * * *

.BMFDPBU 5, * * * * * * * *

Coat liner 5, * * * * * * * *

3.1 Testne metode – uporabljeni merilni sistemi in metode

Raziskava toplotnih lastnosti analiziranih ploskih tekstilij je bila J[WFEFOBTQPNPʊKPUSFISB[MJʊOJINFSJMOJITJTUFNPWJOQPNFUPEJ (PSF"TTPDJBUFT*OD1SFHMFEJOQSJNFSKBWBVQPSBCMKFOJINFSJM - OJITJTUFNPWUFSNFUPE[BEPMPʊBOKFUPQMPUOJIMBTUOPTUJQMPTLJIUF- LTUJMJKTUBQPEBOBWQSFHMFEOJDJ

;B WSFEOPUFOKF UPQMPUOJI MBTUOPTUJ LPNCJOBDJK QMPTLJI UFLTUJMJK LJTFTUBWMKBKPPCMBʊJMOJTJTUFNKFCJMVQPSBCMKFOUPQMPUOJDJMJOEFST

of the selected materials and their basic prop- erties, which are partly published in Celcar et al [26]. The determinations of basic material, thermal and water vapour transmission prop- erties in steady-state conditions were conduct- ed according to the standardized test methods, as follows:

material thickness (h) according to ISO –

5084:1996 [23] and mass per unit area of textile materials (W) according to ISO 3801:1977 [24];

air permeability (Q

air) of textile materials ac- cording to ISO 9237: 1995 [25];

thermal resistance (R

ct) and thermal conduc-

tivity (λ) of textile materials determined with a hot-plate apparatus according to ISO 5085- 1:1989 [22];

water vapour resistance (R

et) and thermal

resistance (Rct) determined with Permetest measurement [20];

thermal resistance (R

ct), warm-cool feeling

(qmax), thermal conductivity (λ) and heat- keeping properties (α) determined with the Thermo Labo II measurement system [21];

water vapour transmission (WVT) of textile –

materials according to the Gore cup method modified by Gore-Tex [7].

(8)

. FB TVS JO H TZT UFNN FU IP E ) PUQ MB UFB QQ BSB UV T<> ć FS N P- BC P**<> 1FS N FU FT U<> ( PS F " TT PD JBU FT * OD N FU IP E < > . FB TVS FED BM - DV MB UF EQ BSB N F - ter s

UI FS N BMS FT JTU BO DF – R

ct

<N

, 8

o

> UI FS N BMD PO EV DU JW JUZ – λ <8 N

o

,

o

>

X BS N D PP MG FF MJOH – q

max

<8 DN

o

> UI FS N BMD PO EV DU JW JUZϩ< 8 N –

o

,

o

> IF BU L FF QJ OHQ SP QFS UZϟ< > – UI FS N BMS FT JTU BO DF – R

ct

<N

, 8

o

> w at er -v ap o u r r es is ta n ce – R

et

<1 BrN

W

o

>

UI FS N BMS FT JTU BO DF – R

ct

<N

, 8

o

> w at er v ap o u r r es is - – ta n ce R

et

<1 BrN

W

o

>

X BU FSW BQ PV SU SB OT N JTT JP O – W V T <H N

o

h

o

I > . FU IP ET ć FN FU IP EJ TC BT FEP O N FB TVS JO HU FN QFSB UVS FT X JUIU IS FFU FN QFSB UVS F TFO TP ST T

1

, T

2

an d T

3

ć FU IFS N BMS FTJ TUB ODF PGU FYU JMFTJ TD BMD VM BU FE GSP NN FB TVS FEU FN QF - SB UVS FWB MVFT

ć FN FU IP EJ TC BT FEP ON FB TVS JO H IF BUĘP XU IS PVH IT BN QMF Ϲć F UI FS N BMDP OE VD UJW JUZB OEU IFS N BM resi st an ce b y co n d uc tio n a re c alc u la- UF EG SP NN FB TVS FEI FB UĘP X 'P SF WB MV BU JO HU IFI FB US FU BJO - JO HQ SP QFS UZB OEU IFS N BMS FTJ TUB O - DFP GU FYU JMFJOX JO EU VOO FMU X PN F - UI PE TB SFV TF EES ZDP OU BD UN FU IP E 4 ,X IFS FT BN QMFJ TJOEJS FD UDP O - tac t w it h h o t p la te , a n d dr y n o n-co n- UBD UN FU IP E 4 #,X IFS FDP OT UB OU EJ TUB ODFT QBDFFYJ TUTC FU X FFOT BN QMF BO EI PUQ MB UF ć FT BN FQ SP DF EVS F X JUIX FUĕ MUFSQ BQ FSP OU IFI FB UQ MB - UFJ TV TF EG PSF WB MV BU JO HXB UFSWB QP - VSS FTJ TUB ODF 8 BS NDP PMG FF MJO H q

max

J TS FDP SEF E BTN BYJN VNMF WF MP GI FB UĘP XS FR VJ - SF EQ FSVOJ UB SF B<8 DN

o

>

ć FN FU IP EJ TC B - TF EP ON FB TVS JO HI FB U ĘP XU IS PVH IT BN QMF ϕ

ct

B OEX JUI PV UT BN - QMF ϕ

0

ć FU IFS N BM SFTJ TUB ODFP GU FYU JMFTJ T DB MD VM BU FEG SP NN FB - TVS FEI FB UĘP XWB MVFT 'P SF WB MV BU JO HXB UFS WB QP VSS FTJ TUB ODFP G UFYU JMFTEJ TUJ MMF EXB UFS w it h det er gen t i s do- se d w it h sy rin ge in to UI FN FB TVS JO HI FB U an d h ea t flo w t hr o u- HIT BN QMF ϕ

ct

B OEX J - UI PV UT BN QMF ϕ

0

B SF N FB TVS FE

ć FN FU IP EJ TC BT FEP ON FB - TVS JO HX FJH IUD IB OH FTP GT BN - QMFC FG PS F G

0

B OEB ęFSU JN F JO UFS WB M G

t

ć FT BN QMFJ T TUSB JO FEP WFSBTN BM MEJ TIX JUI TP MJEES ZB HFO Uć FDP OU BJO - FSX JUIT BN QMFB OEES ZB HFO UJ T ver tic al ly p lace d o n t h e G o re- 5FYT FB MM BNJO BU FTX JNNJO H POXB UFSJON FB TVS JO HEJ TI 'S PNN FB TVS FEX FJH IUD IB O - HFTU IFXB UFSWB QP VSU SB OTNJ T - TJP OP GU IFU FYU JMFJ TD BMD VM BU FE . FB TVS JO H co n di tio n s " N CJFO UU FN QFSB UVS F5

a

œ¡$B OES FM BU JW FI VNJEJ UZ3)œ

Table 3: Comparison between measurement systems and methods for evaluating thermal properties of textile

materials (continued overleaf).

(9)

. FB TVS JO H TZT UFNN FU IP E ) PUQ MB UFB QQ BSB UV T <> ć FS N P- BC P**<> 1FS N FU FT U<> ( PS F " TT PD JBU FT * OD N FU IP E < > . FB TVS JO H EF WJDFTZT UFN C alc u la tio n BO EFYQ SFT TJP O PGS FT VM UT 1B SB N FU FS T R

DU

oU IFS N BMS FTJ TUB O - DFP GU IFB QQ BSB UV TX J - UI PV UT BN QMF <N

,8

o

> R

s

oU IFS N BMS FTJ TUB ODF PGQ MB UF <N

,8

o

> T

1

oU FN QFSB UVS FS FH J - TUFS FEX JUI5

w it h o u t TB N QMF<,>

ϩoU IFS N BMDP OE VD UJW JUZ<8 N

o

,

o

> "oB SF BP G# 5I FB UQ MB UF<" N

> IoU IJD LO FT TP GT BN QMF<N> ͅ5oU FN QFSB UVS FH SBEJFO U 5

#5

o5

a

<,> ϹoI

FB UĘP X<8 > 5

#5

oU FN QFSB UVS FP G# 5C PY<,> 5

a

oB JSU FN QFSB UVS F<,> ϟoI FB UL FFQ JO HQ SP QFS UZ<>

ϕ

ct

oI FB UĘP XX JUIT BN QMF <8 N

o

> ϕ

– h ea t flo w w it h o u t TB N QMF<8 N

o

> 5

h

oU FN QFSB UVS FP GI FB U QM BU FJON FB TVS JO HI FBE

<,> 5 oB JSU FN QFSB UVS F<,>

a

G

oX FJH IUP GEJ TIX JUI TB N QMFC FG PS FU FT UJO H<H> G

t

oX FJH IUP GEJ TIX JUI TB N QMFB ęFSI PVSU F - TUJO H<H> UoU JN FJO UFS WB M UI

<I> "oU

FT UB SF B " DN

<N

>

Table 3: Comparison between measurement systems and methods for evaluating thermal properties of textile

materials (continued overleaf).

(10)

. FB TVS JO H TZT UFNN FU IP E ) PUQ MB UFB QQ BSB UV T <> ć FS N P- BC P**<> 1FS N FU FT U<> ( PS F " TT PD JBU FT * OD N FU IP E < > 1B SB N FU FS T 5

h

oU FN QFSB UVS FS FH J - TUFS FEX JUI5

w it h o u t TB N QMF<,> 5

h

oU FN QFSB UVS FS FH J - TUFS FEX JUI5

w it h o u t TB N QMF<,> 5

oU FN QFSB UVS FS F - HJ TUFS FEX JUI5

w it h TB N QMF<,> 5

oU FN QFSB UVS FS F - HJ TUFS FEX JUI5

w it h TB N QMF<,> 5

oU FN QFSB UVS FS F - HJ TUFS FEX JUI5

w it h TB N QMF<,> IoU IJD LO FT TP GT BN - QMFB UQ SFT TVS F1 B D/ DN

o

<N> R

ct

oU IFS N BMS FTJ TUB O - DFP GU FYU JMFN BU FS JB MT <N

,8

o

> ϩoU IFS N BMDP OE VD UJW J - UZ<8 N

o

,

o

>

ϕ

ct

oI FB UĘP XX JUIT BN QMF<8 > ϕ

oI FB UĘP XX JUI PV UT BN QMF<8 > α

4,

– h ea t-k eep in g p ro p er ty e va lu at ed X JUIES ZDP OU BD UN FU IP E<> α

4#,

– h ea t-k eep in g p ro p er ty e va lu at ed X JUIES ZO PODP OU BD UN FU IP E<> ϕ

DUo4,

oI FB UĘP XX JUIT BN QMFN FB TVS FE X JUIES ZDP OU BD UN FU IP E<8 > ϕ

DUo4#,

oI FB UĘP XX JUIT BN QMFN FB TV - SF EX JUIES ZO PODP OU BD UN FU IP E<8 > R

ct

oU IFS N BMS FTJ TUB ODFP GU FYU JMFN BU F - SJB MT<N

,8

o

> R

DUo4,

oU IFS N BMS FTJ TUB ODFF WB MV BU FE X JUIES ZDP OU BD UN FU IP E<N

,8

o

> R

DUo4#,

oU IFS N BMS FTJ TUB ODFF WB MV BU FE X JUIES ZO PODP OU BD UN FU IP E <N

,8

o

> ϕ

DUo4,

oI FB UĘP XN FB TVS FEX JUIES Z DP OU BD UN FU IP E<8 > ϕ

DUo4#,

oI FB UĘP XN FB TVS FEX JUIES Z OP ODP OU BD UN FU IP E<8 > ϕ

ct

oES ZI FB UĘP X<8 > 5

s

oN BJOU FN QFSB UVS FP G# 5I FB UQ MB UF T LJOU FN QFSB UVS F<,> ϕ

et

oI FB UMPT TC ZF WB QP SB UJP OP GXB - UFS<8 > p

s

– s at ura te d va p o ur p res sur e o n t h e #5 Q MB UF<1 B> p

a

oWB QP VSQ SFT TVS FJOU IFU VOO FM<1 B> R

ϩ

oU IFS N BMS FTJ TUB ODFC ZDP OE VD UJP O <N

,8

o

>

,oD BMJ CSB UJP ODP OT UB OUP G TUB OE BS ET BN QMFX JUIL OP - w n R

ct

, 3)oS FM BU JW FI VNJEJ UZJO UVOO FM<> p

s

– s at ura te d va p o ur p res- TVS FJOB JS<1 B> p

a

– va p o ur p res sur e in t h e UVOO FM<1 B> $oD BMJ CSB UJP ODP OT UB OUP G TUB OE BS ET BN QMFX JUIL OP - w n R

et

Table 3: Comparison between measurement systems and methods for evaluating thermal properties of textile

materials

(11)

TJNVMBDJKP[OPKFOKB BOHM Thermal sweating cylinder TMJLBLJTJ - NVMJSBQSFIPEUPQMPUFTLP[JUFLTUJMJKPBMJLPNCJOBDJKPUFLTUJMJKLBLPS UVEJQSFIPEWPEOFQBSFTQPNPʊKPÝUFWJMOJITJNVMJSBOJIäMF[[OPK - OJDLJTPOBQPWSÝJOJDJMJOESBJOPTLSCVKFKPP[JSPNBEPWBKBKPEP - MPʊFOP LPMJʊJOP WPEF OB QPWSÝJOP 0NPHPʊB NFSKFOKF UPQMPUOFHB VQPSBLPSJHJSBOFHBUPQMPUOFHBVQPSBLJQPNFOJVQPSLPNCJOBDJ - je tekstilij pri znojenju in sposobnost prehoda vodne pare skozi plo- TLFUFLTUJMJKFBMJLPNCJOBDJKPUFLTUJMJKQSJSB[MJʊOJILMJNBUTLJISB[NF - SBIJOTUPQOKBI[OPKFOKB%FMVKFQPEPCOPLPULPäOJNPEFMMFEBTP NFSJUWFJ[WFEFOFWPCMJLJDJMJOESBBMJUSVQBUFMFTBQSJUPQMPUOJQMPÝʊJ BMJLPäOFNNPEFMVQBKFQSFJ[LVÝBOFDWTUBWMKFOIPSJ[POUBMOP<

>.FSJUWFTFMBILPJ[WBKBKPQSJSB[MJʊOJILMJNBUTLJISB[NFSBIW LMJNBUTLJLPNPSJ UFNQFSBUVSOPPCNPʊKFPEo$EP$SF - MBUJWOBWMBäOPTU[SBLBPEEPPETUPUOBLKFSKFDJMJOEFSQPTUB - WMKFOOBUFIUOJDPLJNFENFSKFOKFN[B[OBWBTQSFNFNCFWNBTJDJ - MJOESBTQSFJ[LVÝBODFN

4UFOBDJMJOESBKFPHSFWBOBOBUFNQFSBUVSPLJVTUSF[BUFNQFSBUVSJ LPäF $7PEBTFQPDFWLBIEPWBKBEPQPWSÝJOFDJMJOESBP[JSP - NBEPTJNVMJSBOJIäMF[[OPKOJD[SBʊVOBMOJÝLPOBE[PSPWBOJNʊS - QBMOJNTJTUFNPNLKFSJ[IMBQFWBJOQSFIBKBTLP[JQPWSÝJOPWPCMJLJ WPEOFQBSF4JTUFNPNPHPʊBOBE[PSEPWPEBWPEF[BWTBLPQPTB - NF[OPäMF[P[OPKOJDPJOOBTUBWJUFWLPMJʊJOFEPWFEFOFWPEFWEP - MPʊFOJINFKBI PEEPOBKWFʊHN

o

h

o

[BNFSKFOKFCSF[QSF - J[LVÝBODB QSJ OPSNBMOJ UFNQFSBUVSJ QSPTUPSB LJ TP PEWJTOF PE QSFJ[LVÝBODB JO QPHPKFW NFSKFOKB ,PMJʊJOB BCTPSCJSBOF WPEF W QPTBNF[OFNTMPKVUFLTUJMJKFTFEPMPʊJTUFIUBOKFNQPTBNF[OJITMP - KFWQSFJ[LVÝBODBQSFENFSKFOKFNJOUBLPKQPNFSKFOKV;BOBE[PS

The second study of the experimental work in- cluded the testing of different combinations of textile materials used in the first part of re- search, which simulated business clothing sys- tems. 16 different combinations of materials (cf.

Table 2) were chosen for testing on the thermal sweating cylinder at three different environ- mental temperatures (i.e. 25 °C, 10 °C and ‒5

°C) and two sweating conditions (100 and 200 gm–2h–1).

The combinations of clothing materials which simulate the 4-layer and the 6-layer clothing systems were defined through the purpose of us- ability of separate clothing layers in male busi- ness clothing systems. The eight tested combina- tions of materials, which simulate the 4-layer business clothing system (c1‒c8), consisted of underwear layer, shirt layer, liner layer for suits and outerwear-suit layer. All tests were per- formed under two warm-cool environmental conditions (10 °C/65% and 25 °C/65%, air ve- locity 0.1 ms–1) and at two sweating levels (100 and 200 gm–2h). The other eight combinations of materials, which simulated the 6-layer busi- ness clothing system (c9‒c16), consisted of un- derwear layer, shirt layer, liner layer for suits, outerwear-suit layer, liner layer for coats and outerwear-layer for coats. The tests in a cool- cold environment were conducted under two environmental conditions (10 °C/65% and ‒5

°C, air velocity 0.1 ms–1) at two sweating levels (100 and 200 gm–2h). The same textile materi- als for underwear, shirt, liner for suits and coats were used for testing and two parallel tests were carried out for all material combinations. If the difference in results was > 5%, a third test was done, whereby the two with most comparable results were retained and the one with the high- est deviation was ignored.

5FTU.FUIPET

The research of textile thermal properties was performed by using three different measure- ment systems and the Gore & Associates, Inc.

method. A review and comparison of the used measurement systems and methods for meas- uring the thermal properties of textile materials are shown in Table 3.

A thermal sweating cylinder was constructed to measure the simultaneous transmission of heat

Figure 2: Thermal sweating cylinder dressed with a combination of

materials

(12)

UFNQFSBUVSFJO[BKFNBOKFQPEBULPWTLSCJSBʊVOBMOJLTLBUFSJNKF NPHPʊF NFE NFSKFOKFN TQSFNMKBUJ QPMFH TQSFNFNC UFNQFSBUV- SFOBQPWSÝJOJDJMJOESB ¡$ÝFLPMJʊJOPEPWFEFOFUPQMPUF UPQMPUOB NPʊLJHSFKFQPWSÝJOPDJMJOESBOBäFMFOPUFNQFSBUVSPW8N

o

JO UFNQFSBUVSPQPTBNF[OJITMPKFWNBUFSJBMB ¡$<>/BQPEMB- HJJ[NFSKFOJIWSFEOPTUJTFJ[SBʊVOBUPQMPUOJVQPSDFMPUOFLPNCJ - OBDJKFQMPTLJIUFLTUJMJK[[SBʊOJNTMPKFNNFEUFLTUJMJKBNJLJKFJ[SB - äFOLPUTLVQOJUPQMPUOJVQPS R

ct,tot

[J[SB[PN<>

T

c

– T

a

ϕ

c

Rct

tot

= —————— ¨ A

kjer je:

Rct

tot

– skupni toplotni upor kombinacije ploskih tekstilij [m

2

KW

–1

],

T

c

– srednja temperatura na površini cilindra [K], T

a

– temperatura zraka v klimatski komori [K],

A – površina območja testiranja na cilindru [A = 0,29 m

2

], φ

c

– količina dovedene toplote oziroma suhi toplotni tok [W].

%PWPEUPQMPUFKFNFE[OPKFOKFNEFMOPVQPSBCFO[BFWBQPSBDJKP WPEFUBLPEBKFUJLPSJHJSBOJUPQMPUOJVQPSQMPTLFUFLTUJMJKFBMJ LPNCJOBDJKFUFLTUJMJK R

ct,corr

J[SBäFOUBLPMF<>

T

c

– T

a

ϕ

sw

– ϕ

e

Rct

corr

= —————— ¨ A

φ

sw

– količina dovedene toplote pri znojenju oziroma toplotni tok pri znojenju [W].

1SJUFNKFFWBQPSBUJWOJUPQMPUOJUPLEFĕOJSBO[J[SB[PN<>

ϕ

e

m

i

– m

c

¨ϲ

¡$

= m

e

¨ ϲ

¡$

kjer je:

Rct

corr

– korigirani toplotni upor kombinacije ploskih tekstilij [m

2

KW

–1

],

φ

e

– evaporativni toplotni tok [W],

m

i

– količina dovedene vode v cilinder [gh

–1

],

m

c

– količina absorbirane vodne pare v slojih tekstilij [gh

–1

], m

e

– količina evaporirane vodne pare [gh

–1

],

φ

25ºC

– specifična toplota evaporacije vode pri 25 ºC = 0,684 Whg

–1

.

0EOPTNFELPMJʊJOPFWBQPSJSBOFWPEOFQBSF m

e

JOLPMJʊJOPEP- WFEFOFWPEFWDJMJOEFS m

i

KFJ[SBäFOLPUTQPTPCOPTUQSFIPEBWP - EOFQBSFTLP[JQMPTLPUFLTUJMJKPJOKFQPEBO[J[SB[PN<>

m

e

m

i

M

e

= ——— ¨

kjer je:

and moisture through clothing materials or ma- terial combinations. Measurements using the cylinder were made three-dimensionally and by using this method, it is possible to test different types of materials or material combinations un- der different climate conditions in the climate chamber. The basic idea is that the cylinder pro- duces heat and moisture similarly to the human body. The cylinder is dressed with the test mate- rial or a combination of materials (cf. Figure 2) and placed into the climate chamber (temper- ature range between ‒50 ºC and +70 ºC, rela- tive humidity between 15% and 95%) on a bal- ance, which records any weight changes during the test. The cylinder wall is heated to the sur- face temperature corresponding to skin tem- perature (35 °C). A predetermined amount of liquid water is supplied to the surface (to the sweat gland), where it evaporates and leaves the cylinder as water vapour. The amount of wa- ter supply can be chosen within certain limits (from 0 to the maximum value within normal room temperature and without test material, approx. 300 gm-2h-1).The amount of water con- densed in the textiles is determined by weigh- ing the samples prior to and immediately after the test [12, 26].

A computer program is used during the test for the control and measurement of the cylinder surface temperature (°C), heat supply (Wm-2), temperatures at different points (layers of ma- terials, °C), total weight increase during the test (g) and weight increases of individual materi- al layers (g). Based on the measured values, the total thermal resistances of the combinations of textile materials (Rct,tot), which includes thermal resistance of the boundary air layer, is calculat- ed with [12], equation 3, where:

Rct,tot – total thermal resistance of the combina- tion of materials [m2KW–1],

Tc – cylinder surface temperature [K],

Ta – ambient temperature in climate chamber [K],

A – surface test area [A = 0.29 m2],

ϕc – heat supplied to the cylinder in the dry test [W].

Taking into account that the heat supply is partly used to evaporate the water, the correct- ed thermal resistance (Rct,corr) value is calculated with [12] equation 4, where ϕsw means heat sup-

(13)

.

e

oTQPTPCOPTUQSFIPEBWPEOFQBSFTLP[JUFLTUJMJKPBMJLPNCJOB - DJKPUFLTUJMJKJ[SBäFOBW

3F[VMUBUJ[SB[QSBWP

Rezultati raziskave toplotnih lastnosti ploskih tekstilij in njihovih LPNCJOBDJKTPWOBEBMKFWBOKVQPEBOJLPU

rezultati toplotnih lastnosti ploskih tekstilij, ovrednoteni z raz- –

MJʊOJNJNFSJMOJNJTJTUFNJWQSFHMFEOJDJTPQPEBOJSF[VMUBUJ EPCMKFOJTQPNPʊKPUPQMPUOFQMPÝʊFNFSJMOFHBTJTUFNB1FSNF - UFTU JO NFUPEF (PSF "TTPDJBUFT *OD NFEUFN LP TP W QSF- HMFEOJDJQPEBOJSF[VMUBUJEPCMKFOJTQPNPʊKPNFSJMOFHBTJTUF - NBćFSNP-BCP**

SF[VMUBUJNFETFCPKOJIQPWF[BWP[JSPNBPEWJTOPTUJNFEUPQMPU - –

OJNJ MBTUOPTUNJ PWSFEOPUFOJNJ [ SB[MJʊOJNJ NFSJMOJNJ TJTUF- NJUFSSF[VMUBUJPEWJTOPTUJNFEUPQMPUOJNJMBTUOPTUNJJOEFCF - MJOPQMPTLJIUFLTUJMJKJO

SF[VMUBUJUPQMPUOJIMBTUOPTUJLPNCJOBDJKQMPTLJIUFLTUJMJKEPMP- –

ʊFOJTQPNPʊKPUPQMPUOFHBDJMJOESBTTJNVMBDJKP[OPKFOKBLPUTP TVIJUPQMPUOJUPLP[JSPNBJ[HVCBTVIFUPQMPUFUFSUPQMPUOJUPL pri znojenju, toplotni upor in korigirani toplotni upor ter spo- TPCOPTUQSFIPEBWPEOFQBSF

%FMPNBTPSF[VMUBUJUPQMPUOJIMBTUOPTUJJ[NFSKFOJITQPNPʊKPUP - QMPUOFQMPÝʊFJOQPNFUPEJ(PSF"TTPDJBUFT*OD QSFHMFEOJDB UFSSF[VMUBUJOBTMJLBIBBJODUFSCPCKBWMKFOJW$FMDBSFUBM Table 4: Thermal and water vapour transmission properties of clothing materials, evaluated with the hot-plate apparatus, Permetest measurement system and Gore & Associates, Inc. method

'BCSJD TBNQMF

ćFSNBMSFTJTUBODF ćFSNBM conductivity

Water vapour

USBOTNJTTJPO Water vapour resistance R

ct

N

,8

o

ϩ8N

o

,

o

875HN

o

I

o

R

et

N

1B8

o

)PUQMBUF 1FSNFUFTU )PUQMBUF (PSF"TTPDJBUFT*OD 1FSNFUFTU

5,

5,

5,

5,

5,

5,

5,

5,

5,

5,

plied to the cylinder in the wet test (W). Evapo- rative heat loss is calculated with [12] equation 5, where:

Rct,corr – corrected thermal resistance of the com- bination of materials [m2KW–1],

ϕe – evaporative heat loss [W],

mi – amount of water fed into the cylinder [gh–1],

mc – amount of condensed water in the textile materials [gh–1],

me – amount of evaporated water [gh–1], φ25ºC – specific heat of evaporated water at 25 ºC = 0.684 Whg–1.

The amount of evaporated water (Me) as the percentage of water input gives the value of the water vapour transmission of the tested materi- al combination. The amount of evaporated wa- ter is calculated with [12] equation 6, where:

Me – water vapour transmission in %.

4 Results and Discussion

The results of the performed research work are presented as:

the results for the thermal properties of cloth- –

ing materials evaluated by using different

(14)

<>WFOEBSTNPKJI[BSBEJMBäKFHBSB[VNFWBOKBJOQSJNFSKBWFUP - QMPUOJIMBTUOPTUJJ[NFSKFOJIOBSB[MJʊOJINFSJMOJIOBQSBWBIJOQSJ SB[MJʊOJILMJNBUTLJISB[NFSBIPCKBWJMJWUFNQSJTQFWLV

*[SF[VMUBUPWNFSJUFWUPQMPUOFHBVQPSBEPCMKFOFHBTQPNPʊKPUP - QMPUOFQMPÝʊFJONFSJMOFOBQSBWF1FSNFUFTU QSFHMFEOJDBUFSLP- SFMBDJKTLFBOBMJ[FNFEEFCFMJOPJOUPQMPUOJNVQPSPN TMJLBKF WJEFUJEBTF[OBSBÝʊBOKFNEFCFMJOFNBUFSJBMBWSFEOPTUUPQMPUOF - HBVQPSBTPSB[NFSOPQPWFʊVKF4UBUJTUJʊOBBOBMJ[BPEWJTOPTUJNFE J[NFSKFOPEFCFMJOPJOUPQMPUOJNVQPSPNKFQPLB[BMBEBPCTUBKB- KPTUBUJTUJʊOPQPNFNCOFLPSFMBDJKFNFEEFCFMJOPBOBMJ[JSBOJIQMP - TLJIUFLTUJMJKJOUPQMPUOJNVQPSPNUFLTUJMJKJ[NFSKFOJNTUPQMPUOP QMPÝʊP TMJLBBUFSLPSFMBDJKFNFEEFCFMJOPJOUPQMPUOJNVQP- SPNUFLTUJMJKJ[NFSKFOJN[NFSJMOPOBQSBWPćFSNP-BCP** TMJLB C7PMOFOBULBOJOBJ[PETUPUOFHBLBÝNJSKB[P[OBLP5, VQPSBCMKFOB[BNPÝLJQMBÝʊLBUFSFEFCFMJOBKFNNJ[LB[VKF OBKWJÝKPWSFEOPTUUPQMPUOFHBVQPSBNFEUFNLPJNBPETUPUOB WJTLP[OB ULBOJOB [ P[OBLP 5, OBNFOKFOB [B J[EFMBWP QPEMP - HFNPÝLFPCMFLFLJJ[LB[VKFOBKNBOKÝPWSFEOPTUEFCFMJOFOBKOJä - KPWSFEOPTUUPQMPUOFHBVQPSB*[QSJNFSKBWFWSFEOPTUJUPQMPUOFHB VQPSBULBOJO[BNPÝLPPCMFLPKFWJEFUJEBJNBOBKWJÝKPWSFEOPTU UPQMPUOFHBVQPSBPETUPUOBWPMOFOBULBOJOB 5,QSFPTUB - MJEWFULBOJOJNFÝBOJDJWPMOFOJIJOQPMJBNJEOJIUFSWPMOFOJIJO FMBTUBOTLJIWMBLFOQBJNBUBMFOFLPMJLPNBOKÝJUPQMPUOJVQPS;B volnena vlakna je značilno, da so slabi prevodniki toplote, kar po- USKVKFUVEJOJäKBWSFEOPTULPFĕDJFOUBUPQMPUOFQSFWPEOPTUJ*[SF - [VMUBUPWUPQMPUOFHBVQPSBULBOJO[BQPEMPHPNPÝLFPCMFLFJOQMB- Table 5: Thermal properties of clothing materials, evaluated with the Thermo Labo II measurement system

Fabric sample

Thickness h

2)

Warm- cool feeling

q

max

Heat flow

φ

Thermal conductivity

λ

Thermal resistance by

conduction / R

λ

R

ct

Thermal resistance

Heat-keeping property / α

R

ct-SK

R

ct-SBK

α

SK

α

SBK

[mm] [Wcm–2] [W] [Wm–1K–1] [m2KW–1] [m2KW–1] [m2KW–1] [%] [%]

TK 01 0.430 0.202 3.12 0.044

5,

5,

5,

5,

5,

5,

5,

5,

5,

ćJDLOFTTBUQSFTTVSFHGDNo 4,oESZDPOUBDUNFUIPE 4#,oESZOPODPOUBDUNFUIPE

measurement systems: Table 4 presents the results evaluated with the hot-plate appara- tus, Permetest measurement system, and the Gore & Associates, Inc. method, while Table 5 shows the results evaluated by using the Thermo Labo II measurement system;

the results of correlations between textile –

thermal properties measured by using differ- ent test methods, and the results of correla- tions between textile thermal properties and thicknesses; and

the results obtained with thermal sweating –

cylinder measurements (the heat loss from the cylinder in dry and sweating tests, ther- mal and corrected thermal resistance, and water vapour transmission).

The results for the thermal properties, evaluat- ed with the hot-plate apparatus and the Gore

& Associates, Inc. method (cf. Table 4), and the results showed in Figures 6a, 7a, 7c and 8b are partly published in Celcar et al [26]. For a bet- ter understanding and comparison of thermal properties, evaluated with different measure- ment systems and under different environmen- tal conditions, the same results are published in this paper as well.

(15)

Figure 3: Correlation between thermal resistance evaluated with the hot-plate apparatus R

ct-TP

and textile thickness (a), and correlation between thermal resistances evaluated with the Thermo Labo II measurement system R

ct-SK

and textile thickness (b)

B$PSSFMBUJPO CFUXFFO UFYUJMF UIFSNBM SFTJTUBODF evaluated with the hot-plate apparatus R

DU51

and 1FSNFUFTUNFBTVSJOHTZTUFN3

DU1

C$PSSFMBUJPO CFUXFFO UFYUJMF UIFSNBM SFTJTUBODF evaluated with the hot-plate apparatus R

DU51

and ćFSNP-BCP**NFBTVSJOHTZTUFN3

DU4,

D$PSSFMBUJPO CFUXFFO UFYUJMF UIFSNBM SFTJTUBO - DFFWBMVBUFEXJUIUIF1FSNFUFTU3

DU1

BOEćFSNP -BCP**NFBTVSJOHTZTUFN3

DU4,

Figure 4: Correlation between the textile thermal resistances (R

ct

) evaluated with the hot-plate apparatus (R

ct-TP

), Permetest measurement system (R

ct-P

) and Thermo Labo II measurement system (R

ct-SK

)

ÝʊBKFWJEFUJEBTPWSFEOPTUJUPQMPUOFHBVQPSB[FMPOJ[LF1SBWUBLP KFJ[SF[VMUBUPWUPQMPUOFHBVQPSBULBOJO[BQPEMPHPNPÝLFPCMFLF videti, da se vrednosti le-tega bistveno ne razlikujeta, čeprav je tka- OJOB[P[OBLP5,[BSBEJOBOPTB1$.TEFCFMFKÝBHMFEFOBLPO - WFODJPOBMOPQPEMPHPUKULBOJOP[P[OBLP5,

From the thermal resistance values evaluat- ed with the hot-plate apparatus and the Per- metest measurement system (cf. Table 4), and the correlation analysis between thickness and textile thermal resistance (cf. Figure 3), it is ev-

(16)

Statistična analiza odvisnosti med rezultati toplotnega upora, do- ločenega s pomočjo toplotne plošče in merilne naprave Permetest, je pokazala, da med parametroma obstajajo statistično pomembne korelacije (slika 4a). Vrednost korelacijskega koeficienta (r) zna- ša 0,99, kar pomeni, da gre za statistično dokazano korelacijo med parametroma, izmerjenima na različnih merilnih napravah. Toplo- tni upor analiziranih ploskih tekstilij R

ct

, dobljen z merilno napra- vo Thermo Labo II, je določen po dveh metodah, in sicer po suhi kontaktni metodi R

ct-SK

, kjer je preizkušanec v neposrednem stiku s toplotnim telesom, ter po suhi brezkontaktni metodi R

ct-SBK

, kjer je med toplotnim telesom in preizkušancem vstavljen še okvir z mre- žico, s čimer se simulira zračni sloj. Iz rezultatov toplotnega upora je videti, da ima najvišjo vrednost tkanina za moški plašč, tj. tka- nina z oznako TK09, najnižjo vrednost pa ima tkanina za podlo- go moške obleke z oznako TK21, preglednica 5. Toplotni upor te- kstilij, določen po suhi brezkontaktni metodi, je v povprečju za 55

% višji od toplotnega upora, določenega po suhi kontaktni metodi.

Statistična analiza odvisnosti med toplotnim uporom, izmerjenim s pomočjo merilne naprave Thermo Labo II po suhi kontaktni me- todi, in toplotnim uporom, izmerjenim s toplotno ploščo in z me- rilno napravo Permetest, je pokazala, da med parametri obstajajo statistično pomembne korelacije (sliki 4b in 4c). Vrednost korela- cijskega koeficienta v prvem primeru (slika 4b) znaša 0,80, med- tem ko vrednost korelacijskega koeficienta v drugem primeru (sli- ka 4c) znaša 0,83. Iz tega lahko povzamemo, da med vrednostmi toplotnega upora, izmerjenega z merilno napravo Thermo Labo II, s toplotno ploščo in z merilno napravo Permetest, obstaja linear- na povezava.

Prav tako je bilo na podlagi rezultatov toplotnega upora (R

λ-TL

), določenega iz kvocienta debeline in toplotne prevodnosti, doblje- ne z merilno napravo Thermo Labo II, ter s toplotnim uporom (R

ct

), dobljenim s toplotno ploščo in z merilno napravo Permetest, ugotovljeno, da obstajajo statistično pomembne korelacije (sli-

Figure 5: Correlation between textile thermal resistance by conduction evaluated with the Thermo Labo II meas- urement system R

λ-TL

and textile thermal resistance evaluated with the hot-plate apparatus R

ct-TP

(a) and Per- metest measurement system R

ct-P

(b)

ident that by increasing textile thickness, ther- mal resistance values proportionally increase.

A statistical analysis between measured thick- ness and textile thermal resistance showed that statistically important correlations exist be- tween thickness and textile thermal resistance, evaluated with a hot-plate apparatus (cf. Fig- ure 3a), as well as correlations between thick- ness and textile thermal resistance evaluated by using the Thermo Labo II measurement system (cf. Figure 3b). It is evident that the 100% cash- mere fabric (TK09, used for coats) 1.71 mm in thickness has the highest thermal resistance val- ue, while the 100% viscose fabric (TK12, used for suit linings) has the lowest thickness and the low- est thermal resistance value. The thermal resist- ance values of textiles used for male suits show that the 100% wool fabric (TK01) has the high- est value of thermal resistance, while the oth- er two fabrics, a mixture of wool and polyamide (TK02), and a mixture of wool and elastane fi- bres (TK03), have slightly lower thermal resist- ance values. Furthermore, fabrics used for lining suits and coats have very low thermal resistance values. By comparing the thermal resistance val- ues of the two fabrics for male suit linings (TK12 and TK21), it can be seen that the values do not differentiate at all despite the fabric coated with phase-change materials, PCMs (TK21), being thicker if compared to the fabric not coated with PCMs (TK12).

A statistical analysis of the textile thermal re- sistance evaluated by using the hot-plate appa-

(17)

ki 5a in 5b). Vrednost korelacijskega koeficienta v obeh primerih znaša 0,98, kar pomeni, da obstaja linearna povezava med ome- njenima parametroma.

Iz rezultatov toplo-hladnega občutka q

max

(preglednica 5), ki je bil določen s pomočjo merilne naprave Thermo Labo II, je videti, da imajo najvišje vrednosti parametra tkanine za podlogo moške obleke in plašča (najvišjo vrednost ima tkanina z oznako TK12), sledi jim tkanina za moško srajco z oznako TK07, kar pomeni, da omenjene tkanine dajejo hladnejši občutek v primerjavi z drugi- mi tekstilijami, ki imajo nižje vrednosti toplo-hladnega občutka.

Višje vrednosti povedo, da ploska tekstilija daje hladnejši občutek in nasprotno, kar pomeni, da tkanina z oznako TK12, tj. 100-od- stotna viskozna tkanina za podlogo moške obleke, daje najhla- dnejši občutek, tkanina z oznako TK09, tj. 100-odstotna kašmir- ska dlaka, pa najtoplejši občutek. Sposobnost zadrževanja toplote, ki je izražena s koeficientom ohranjanja toplote (α), je izračuna- na iz vrednosti izgub toplotnega toka, izmerjenega s pomočjo me- rilne naprave Thermo Labo II po dveh metodah, in sicer na pod- lagi suhe kontaktne metode (α

SK

) in suhe brezkontaktne metode

SBK

). Vrednosti koeficienta ohranjanja toplote, dobljene po suhi brezkontaktni metodi, so za 30 do 60 % višje od vrednosti koe- ficienta, dobljenega po suhi kontaktni metodi. To pomeni, da pri suhi brezkontaktni metodi, kjer je med toplotnim telesom in pre- izkušancem zračni sloj, ki je toplotni izolator, le-ta povečuje spo- sobnost zadrževanja toplote. Iz rezultatov je videti, da najnižjo vrednost koeficienta ohranjanja toplote pri suhi kontaktni meto- di izkazujeta tkanini s fazno spremenljivimi materiali v/na povr- šini tekstilije, to sta tkanini z oznako TK21 in TK22, najvišjo vre- dnost sposobnosti zadrževanja toplote pa kaže tkanina za moški plašč, z oznako TK09, sledi ji tkanina za srajco, z oznako TK07, tej pa pletivo za spodnje perilo z oznako TK15. Iz rezultatov me- ritev upora ploskih tekstilij proti prehodu vodne pare (R

et

), ki je bil določen s pomočjo merilne naprave Permetest (preglednica 4) je videti, da je vrednost upora proti prehodu vodne pare najvišja pri bombažnem pletivu z oznako TK15, najnižja pa je bila izmerje- na pri viskozni tkanini za podlogo moške obleke z oznako TK12.

Meritve kažejo tudi, da ima tkanina z oznako TK21 (100-odstotna viskozna podloga z nanosom PCMs) enkrat višjo vrednost R

et

kot tkanina z oznako TK12 (100-odstotna viskozna podloga). Zaznana razlika je posledica različnih ploskovnih mas in debelin analizira- nih tkanin ter gostote niti in nanosa PCMs, ki zmanjšuje prenos vodne pare skozi plosko tekstilijo in povečuje upor proti prehodu vodne pare. Statistična primerjava debeline uporabljenih ploskih tekstilij z uporom tekstilije proti prehodu vodne pare je pokaza- la, da med parametroma obstajajo statistično pomembne korelaci- je s koleracijskim koeficientom (r) 0,96. To pomeni, da z narašča- njem debeline materiala vrednost upora proti prehodu vodne pare sorazmerno narašča.

Rezultati analize vpliva klimatskih razmer in stopnje znojenja na vrednosti suhega (φ

c

) in evaporativnega (φ

e

) toplotnega toka kom-

ratus and the Permetest measurement system showed that statistically significant correla- tions (the value of correlation coefficient (r) is 0.99) exist between parameters (cf. Figure 4a).

The thermal resistance evaluated with the Ther- mo Labo II measurement system is determined according to two methods, i.e. the dry contact method (Rct-SK), where the sample is in direct contact with the hot plate, and the dry non- contact method (Rct-SKB), where a constant dis- tance space between the sample and the hot plate is maintained. The results show that the fabric TK09, used for coats, has the highest val- ue, and the fabric TK21, used for lining suits, has the lowest value of thermal resistance eval- uated with the Thermo Labo II measurement system (cf. Table 5). The thermal resistance val- ues determined according to the dry non-con- tact method are by approximately 55% high- er than the values determined according to the dry contact method. The statistical analysis of the textile thermal resistance evaluated with the dry contact method using the Thermo Labo II measurement system and the thermal resist- ance evaluated using the hot-plate apparatus, and the Permetest measurement system pointed out statistically significant correlations between the parameters (cf. Figure 4b and 4c). The val- ue of the correlation coefficient (r) in the first case is 0.80 (cf. Figure 4b), while it is 0.83 in the second case (cf. Figure 4c). It can be concluded that linear connections exist between the textile thermal resistance values evaluated with the Thermo Labo II measurement system, the hot- plate apparatus, and the Permetest measure- ment system.

The results of the textile thermal resistance val- ues by conduction (Rλ-TL) determined with the quotient of the textile thickness and thermal conductivity evaluated with the Thermo Labo II measurement system, the textile thermal re- sistance evaluated using the hot-plate appara- tus, and the Permetest measurement system, leads to the existence of statistically signifi- cant correlations (cf. Figure 5a and b). The lat- ter means that there are linear connections be- tween these parameters. The highest values of warm-cool feeling (qmax), determined with the Thermo Labo II measurement system (cf. Ta- ble 5), are attained at the fabrics used for lin-

Reference

POVEZANI DOKUMENTI

The operational temperature range of this epoxy is from –55 °C to 180 °C, and its thermal properties are similar to PP GF30, the plastic material used for the body of the lamp.. If

Experimental work was used to obtain Drucker-Prager-cap (DPC) model material parameters with the help of a Brazilian disc test and a uniaxial com- pression test for the linear part

The presented paper is aimed at a determination of the elasticity constants of textile composites using sub-scale models to determine the properties that cannot be measured

This paper presents the results of a preliminary study focused on the structural behavior of typical stiffened plate panels used for shipbuilding structures and their fatigue

According to the results of the ranking, the main parameters of material assemblies were identified as follows: the temperature range for which the use of clothing is

This technology is based on the biodegradation of wastewater with activated sludge in a combi- nation with the physical process of membrane filtration and has become

In the second study, the thermal properties of material combina- tions were evaluated by using a thermal sweating cylinder enabling the evaluation of heat and moisture

The article presents the views and opinions of the members of the Italian national com- munity regarding the organisation of their institutions and schools and regarding state