• Rezultati Niso Bili Najdeni

Mini-Worskshop Bled 2013, Looking into Hadrons 9 July 2013

N/A
N/A
Protected

Academic year: 2022

Share "Mini-Worskshop Bled 2013, Looking into Hadrons 9 July 2013"

Copied!
51
0
0

Celotno besedilo

(1)

Marko Pet!č

on behalf of the Belle Collaboration

Mini-Worskshop Bled 2013, Looking into Hadrons

9 July 2013

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 1/51

1

/

51

(2)

Content

• The experiment

• Botomonium

◦ Observation of exotic states Z

b

states

◦ Observation of Υ(5S) → Υ(nS)π

0

π

0

◦ 6D amplitude analysis of Υ(5S) → Υ(nS)π

+

π

+

h

b

→ η

b

transitions

◦ First Evidence for η

b

(2S)

• Chamonium

◦ Update on e

+

e

→ π

+

π

J/ψ via initial state radiation (ISR)

◦ Update on e

+

e

→ π

+

π

ψ(2S) via ISR

e

+

e

→ ηJψ via ISR

◦ Measurement of Z (4430)

+

quantum numbers

◦ Updated results of Y (4008) and Y (4260)

• Look into the future

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 2/51

2

/

51

(3)

The Factories

Aerogel Cherenkov cnt.

SC solenoid CsI TOF Counter

SVD µ/KLdetector

Central Drift Chamber

�.� GeVe+

�.� GeVe

Christian Oswald – Spectroscopy from the and incl. semileptonic - BEAUTY 2013 7

data sample

20%

76%

4%

Background for studies, but interesting for spectroscopy Initial motivation to take data near

Bottomonium spectroscopy

[PRL102,012001(2009)]

e

+

e

colliders particularly clean environment for spectroscopy

Very clean environment for physics studies

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 3/51

3

/

51

(4)

The Υ(5 S ) data sample

• Heavy quarkonium is an ideal tool to study the “meson”

which carries spin and angular momentum and described by (mostly non-relativistic) QCD. Godfrey-Isgur, PRD32,169(1985)

Christian Oswald – Spectroscopy from the and incl. semileptonic - BEAUTY 2013 7

data sample

20%

76%

4%

Background for studies, but interesting for spectroscopy Initial motivation to take data near

Bottomonium spectroscopy

[PRL102,012001(2009)]

B

( )s

B

( )s

B

( )

B

( )

( ) (bb)X

���

���

(�S) ��

• Initial motivation to take data near Υ(5 S )

• Background for B

s

studies, but interesting for spectroscopy

• Bottomonium spectroscopy

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 4/51

4

/

51

(5)

Puzzles of Υ(5 S ) Decays

Very interesting but yet understood

R

b

and σ(Υ(nS)ππ) shapes are different (2σ)

(GeV) s

10.75 10.8 10.85 10.9 10.95 11 11.05

]µµ[0σ] / ππ(nS)Υ[σ

0.000 0.002 0.004 0.006 0.008 0.010 0.012

π π (1S) Υ

π π (2S) Υ

π (3S)π Υ

(GeV) s

10.75 10.8 10.85 10.9 10.95 11 11.05

]µµ[0σ] / b[bσ = bR

0.1 0.2 0.3 0.4 0.5 0.6

(a)

PRD82, 091106R(2010)

Anomalously Υ(nS )ππ transitions at Belle

Process Γ[MeV]

Υ(5S)→Υ(1S)π+π 0.59±0.04±0.09 Υ(5S)→Υ(2S)π+π 0.85±0.07±0.16 Υ(5S)→Υ(3S)π+π 0.52+0.20−0.17±0.10 Υ(2S)→Υ(1S)π+π 0.0060 Υ(3S)→Υ(1S)π+π 0.0009 Υ(4S)→Υ(1S)π+π 0.0019

Γ [Υ(5S) → Υ(1, 2, 3, S)π

+

π

]

Γ [Υ(2, 3, 4 S ) → Υ(1 S

+

π

] 100

• Rescattering of on-shell B

()

B

()

[JETP Lett 87, 147 (2008)]

• Tetraquarks [Eur. Phys. J. C71, 1534 (2011)]

• Exotic resonance Y

b

near Υ(5S) analogue of Y (4260) resonance with Γ ( J /ψππ) [PRL104, 162001 (2010)]

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 5/51

5

/

51

(6)

Observation of Υ(5 S ) → h b ( nP+ π

h

b

(nP)

e

+

e

+

(�S)

Belle: Inclusive search e

+

e

→ Υ(5 S ) → π

+

π

X M

miss

+

π

)

2

= (E

Υ(5S)

E

ππ

)

2

p

2ππ

Simultaneous discovery of h

b

(1P ) and h

b

(2P) [PRL 108, 032001 (2012)]

Events / 5 MeV/c2

0 10000 20000 30000 40000

9.4 9.6 9.8 10 10.2 10.4

Mmiss (GeV/c ) 2

ϒ(3S)→ϒ(1S) ϒ(2S)→ϒ(1S)

ϒ(1S)

ϒ(2S)

ϒ(3S) ϒ(1D)

h b(2P) h b(1P)

Yield [×103] Mass [MeV/c2] Significance Υ(1S) 105.2±5.8±3.0 9459.4±0.5±1.0 18.2σ hb(1P) 50.4±7.8+4.5−9.1 9898.3±1.1+1.0−1.1 6.2σ

3S1S 56.0±19 9973.01 2.9σ

Υ(2S) 143.5±8.7±6.8 10022.3±0.4±1.0 16.6σ Υ(1D) 22.0±7.8 10166.2±2.6 2.4σ hb(2P) 84.4±6.8+23.−10. 10259.8±0.6+1.4−1.0 12.4σ 2S1S 151.7±9.7+9.0−20. 10304.6±0.6±1.0 15.7σ Υ(3S) 45.6±5.2±5.1 10356.7±0.9±1.1 8.5σ

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 6/51

6

/

51

(7)

h b results

h

b

is the singlet partner of χ

bJ

(nP )

◦ Hyperfine Splitting: M (singlet ) − M(triplet )

M

swa

= (χ

bJ

(nP )) = (M

χb0

+ 3M

χb1

+ 5M

χb2

)/9

◦ Deviations from Spin Weighted Average of χ

bJ

consistent with zero [PRL 109, 232002 (2012)]

◦ ∆M

HF

= M(h

b

(nP )) − M

swa

bJ

(nP)) =

0.8 ± 1.1 MeV 1P 0.5 ± 1.2 MeV 2P

• Heavy quark spin flip should suppress the π

+

π

h

b

transition

R =

Γ[Υ(5S)

Spin Flip

−→ hb(nP)π+π] Γ[Υ(5S)No Spin Flip

−→ Υ(2S)π+π]

=

0.46 ± 0.08

+0.07−0.12

1P 0.77 ± 0.08

+0.22−0.17

2P

◦ Violation of heavy quark spin symmetry

• Exotic decay mechanism

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 7/51

7

/

51

(8)

Resonant structure of Υ(5 S ) → h b (1 P , 2 P+ π

• Belle has discovered two charged bottomonium-like resonances [PRL 108, 122001 (2012)]

Christian Oswald – Spectroscopy from the and incl. semileptonic - BEAUTY 2013 13

Outline

10.50

10.25

10.00

9.75

9.50

Mass [GeV]

Observation of exotic states

Υ(5S)hb(1P)π+πbackground subtracted

-2000 0 2000 4000 6000 8000 10000 12000

10.4 10.5 10.6 10.7

Mmiss(π), GeV/c2

Events / 10 MeV/c2

(a)

Υ(5S)hb(2P)π+πbackground subtracted

0 2500 5000 7500 10000 12500 15000 17500

10.4 10.5 10.6 10.7

Mmiss(π), GeV/c2

Events / 10 MeV/c2

(b)

• Saturated with Z

b

• Non-resonant amplitude constant with zero

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 8/51

8

/

51

(9)

Resonant structure of Υ(5 S ) → Υ( nS+ π

• Charged Z

b

states are observed in 5 final states

102 104 106 108 110 112 114 116

0 0.5 1 1.5 2

M2+π-), GeV2/c4 M2(Y(1S)π)max, GeV2/c4

(a)

108 110 112 114 116

0 0.2 0.4 0.6 0.8

M2+π-), GeV2/c4 M2(Y(2S)π)max, GeV2/c4

(b)

112 113 114 115 116

0 0.1 0.2 0.3

M2+π-), GeV2/c4 M2(Y(3S)π)max, GeV2/c4

(c)

FIG. 2: Dalitz plots for Υ(nS)π+πevents in Υ(nS) mass sidebands for the (a) Υ(1S); (b) Υ(2S); (c) Υ(3S)

102 104 106 108 110 112 114 116

0 0.5 1 1.5 2

M2+π-), GeV2/c4 M2(Y(1S)π)max, GeV2/c4

(a)

108 110 112 114 116

0 0.2 0.4 0.6 0.8

M2+π-), GeV2/c4 M2(Y(2S)π)max, GeV2/c4

(b)

112 113 114 115 116

0 0.1 0.2 0.3

M2+π-), GeV2/c4 M2(Y(3S)π)max, GeV2/c4

(c)

FIG. 3: Dalitz plots for Υ(nS)π+πevents in signal region for the (a) Υ(1S); (b) Υ(2S); (c) Υ(3S). Vertical lines indicate the regions of Dalitz plots included in amplitude analyses.

high background region applying requirement onM(π+π) as given in Table I. For the remaining part of the phase space the distribution of background events is assumed to be uniform.

For the further analysis we select events around respective Υ(nS) mass peak as shown in Fig. 1;

Dalitz plots for selected events are shown in Fig. 3. Fractions of signal events in the selected samples are given in Table I were determined from the fit to the correspondingM M(π+π) spectrum as described above.

The amplitude analysis of three-body Υ(10860)→Υ(nS)π+π(n= 1,2,3) decays reported here is performed by means of an unbinned maximum likelihood fit. Variations of the reconstruction efficiency over the phase space is determined using MC simulated signal events generated to have uniform distribution.

We use the following parametrization of the Υ(10860)→Υ(nS)π+πthree-body decay ampli- tude:

M(s1, s2) =A1(s1, s2) +A2(s1, s2) +Af0+Af2+AN R,

wheres1=m2(Y(nS)π+),s2=m2(Y(nS)π). AmplitudesA1andA2areS−wave Breit-Wigner functions to account for observedZb(10610) andZb(10650) peaks, respectively. To account for a possibility for Υ(10860) decay to bothZ+πandZπ+channels, amplitudesA1 andA2 are symmetrized with respect toπ+andπinterchange. Taking into account isospin symmetry the

(�S) (�S)+ (�S) (�S)+ (�S) (�S)+

• Region with large backgrounds from photon conversions were excluded

• Signal amplitude parameterization:

S(s1,s2) =A(Zb1) +A(Zb2) +A(f0(980)) +A(f2(1275)) +C1NR+C2NRm2(ππ)

• Parameterization of the NR-amplitude: [PRD74, 054022 (2006)]

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 9/51

9

/

51

(10)

Resonant structure of Υ(5 S ) → Υ( nS+ π

Υ(5S)Υ(1S)π+π

0 20 40 60 80

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 M(Y(1S)π)max, (GeV/c2)

(Events/10 MeV/c2) (a)

Υ(5S)Υ(2S)π+π

0 20 40 60 80 100

10.4 10.45 10.510.55 10.610.65 10.7 10.75 M(Y(2S)π)max, (GeV/c2)

(Events/5 MeV/c2) (c)

Υ(5S)Υ(3S)π+π

0 20 40 60 80 100 120

10.58 10.62 10.66 10.70 10.74

M(Y(3S)π)max, (GeV/c2)

(Events/4 MeV/c2) (e)

Z

b

amplitudes are parameterized by Breit-Wigner functions and symmetrized with respect to interchange of the two pions: A(Z

b

) = BW (s

1

, M

Z

, ΓZ ) + BW (s

2

, M

Z

, Γ Z )

A(f

0

(980) – Flatte distribution

A(f

0

(1275) – Breit-Wigner distribution

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 10/51

10

/

51

(11)

Summary of Z b masses and widths

Average over 5 channels M

1

= 10607.2 ± 2.0 MeV Γ

1

= 18.4 ± 2.4 MeV

M

Zb

M

BB

= 2.6 ± 2.1 MeV M

2

= 10652.2 ± 1.5 MeV Γ

2

= 11.5 ± 2.2 MeV M

Z0

b

M

BB

= 1.8 ± 1.7 MeV

-10 0 10 -10 0 10 -10 0 10

Υ(1S)π+π- Υ(2S)π+π- Υ(3S)π+π- hb(1P)π+π- hb(2P)π+π- Average

Zb(10610)

ΔM, MeV ΔΓ, MeV

Zb(10650)

ΔM, MeV ΔΓ, MeV -10 0 10

FIG. 6: Comparison ofZb(10610) andZb(10650) parameters obtained from different decay channels. The vertical dotted lines indicateBBandBBthresholds.

channelsBB(10604.6 MeV/c2) andBB(10650.2 MeV/c2) that indicates “molecular” nature of these states and might explain most of the observed properties [16]. Preliminary announcement of these results triggered intensive discussion of other possible interpretations [17–20].

TABLE V: Comparison ofZb(10610) andZb(10650) parameters obtained from Υ(10860)Υ(nS)π+π (n= 1,2,3) and Υ(10860)hb(mP)π+π(m= 1,2) analyses.

Final state Υ(1S)π+π Υ(2S)π+π Υ(3S)π+π hb(1P)π+πhb(2P+π M(Zb(10610)), MeV/c2 10611±4±3 10609±2±3 10608±2±3 10605±2+3−1 10596±7+5−1 Γ(Zb(10610)), MeV/c2 22.3±7.7+3.04.0 24.2±3.1+2.03.0 17.6±3.0±3.0 11.4+4.5+2.13.91.2 16+16+9104 M(Zb(10650)), MeV/c2 10657±3 10651±2±3 10652±2 10655±3+1210651±4+12

Γ(Zb(10650)), MeV/c2 16.3±9.8+6.02.0 13.3±3.3+4.03.0 8.4±2.0±2.0 20.9+5.4+2.14.75.7 12+11+792

Rel. normalization 0.57±0.21+0.190.040.86±0.11+0.040.100.96±0.14+0.080.05 1.8+1.0+0.10.70.5 1.3+3.1+0.41.10.7 Rel. phase, degrees 58±43+49 −13±13+178 −9±19+1126 188+44+4589 256+56+1172184

VI. ACKNOWLEDGEMENT

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] N. Brambillaet al., Eur. Phys. J. C71, 1534 (2011).

[2] K.-F. Chenet al.(Belle Collaboration), Phys. Rev. Lett.100, 112001 (2008).

Z Z’

B B B B

• Angular analysis → both state J

P

= 1

+

• Proximity to thresholds favors molecule over tetraquark Z

b

∼ | BB

i = | ↑↑ + ↑↓i &

Swave h

b

(mP)π not suppressed Z

b0

∼ | B

B

i = | ↑↑ − ↑↓i %

• Phase btw Z

b

and Z

b0

amplitudes is ∼ 0

for Υ(nS )ππ and

∼ 180

for h

b

(mP )ππ

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 11/51

11

/

51

(12)

Υ(5 S ) → BB π, BB π, B B π

Christian Oswald – Spectroscopy from the and incl. semileptonic - BEAUTY 2013 17

= Molecule?

Total branching fraction:

sidebands Data

signal 2-body decays

Belle preliminary Belle preliminary

Data

One charged pion and

full reconstruction of one B meson:

[arXiv:1209:6450]

Preliminary

M(B)[GeV/c]

Christian Oswald – Spectroscopy from the and incl. semileptonic - BEAUTY 2013 17

= Molecule?

Total branching fraction:

sidebands Data

signal 2-body decays

Belle preliminary Belle preliminary

Data

One charged pion and

full reconstruction of one B meson:

[arXiv:1209:6450]

Preliminary

P(B)[GeV/c]

• Preliminary study of Belle [arXiv:1209:6450]

• One charged pion and full reconstruction of one B B

+

J /ψK

+

D

0

π

+

B

+

J /ψK

0

D

π

+

D

∗−

π

+

• Total branching fraction 1 × 10

−4

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 12/51

12

/

51

(13)

Summary of Υ(5 S ) → BBπ, BB π, B B π

Results

• Recoil mass of the system:

M

r

(Bπ) = q

E

Υ(5S)2

P (Bπ)

2

• Shape of combinatorial background estimated from wrong-sign combinations in data

Preliminary BB

B B

0 20 40 60 80 100 120

5 5.1 5.2 5.3 5.4 5.5

rM(Bπ)+M(B)- MB, GeV/c2

Nevents/5 MeV/c2 (c)

}

MB MB=�� MeV

Mr(B ) +M(B) MB[GeV/c]

B r

Υ(5S) → B

(∗)

B

(∗)

π

Belle 121 fb

−1

significance BB < 0.60% at 90% C.L.

BB

+ BB

4.25 ± 0.44 ± 0.69% 9.3σ B

B

+ B

B

2.12 ± 0.29 ± 0.36% 5.7σ

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 13/51

13

/

51

(14)

Interpretation as Z bB ( ) B ( ) ?

Fit function

f = (M

r

(π))

Bkg + A

Zb

+ A

Z0

b

+ A

NR

BB

π B

B

π

Preliminary Preliminary

Mr( )[GeV] Mr( )[GeV]

Can be described by two models:

A

Zb

+ A

Z0

b

or A

Zb

+ A

NR

Significance of Z

b

BB

> 8σ

Well described by:

A

Z0 b

or A

Z0

b

+ A

NR

Significance of Z

b0

B

B

> 6.8σ

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 14/51

14

/

51

(15)

Observation of Z bB ( ) B ( )

arXiv:1209.6450

Channel Fraction, %

Z

b

Z

b0

Υ(1S)π

+

0.32 ± 0.09 0.24 ± 0.07 Υ(2S )π

+

4.38 ± 1.21 2.40 ± 0.63 Υ(3S )π

+

2.15 ± 0.56 1.64 ± 0.40 h

b

(1P )π

+

2.81 ± 1.10 7.43 ± 2.70 h

b

(2P)π

+

4.34 ± 2.07 14.8 ± 6.22 B

+

B

0

+ B

0

B

+

86.0 ± 3.6 − B

+

B

0

− 73.4 ± 7.0

• B r (Z

b0

BB

) insignificant

• If included, other fraction of Z

b0

are reduced by 1.33

Z

b0

BB

suppressed w.r.t. B

B

despite much larger PHSP

Explanation

Molecule → admixture of BB

in Z

b0

is small Challenging for tetraquark!

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 15/51

15

/

51

(16)

First observation of Υ(5 S ) → Υ( nS0 π 0

0 10 20 30 40 50 60

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 Mmiss0π0), GeV/c2

Events/ 10 MeV/c2

(b)

0 10 20 30 40 50 60

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 Mmiss0π0), GeV/c2

Events/ 10 MeV/c2

(a)

0 2 4 6 8 10 12 14 16 18 20

9.9 10 10.1 10.2 10.3 10.4

M(Υπ+π), GeV/c2

Events/ 10 MeV/c2

(c)

(�S) (�S)

(�S) (�S)

(�S)

(�S)

re�ection e+e � �

µ+µ � � (�S) + � �

• First observation [arxiv:1207.4345]

B (Υ(5 S ) → Υ(1 S)π

0

π

0

) = (2.25 ± 0.11 ± 0.20) × 10

−3

B (Υ(5 S) → Υ(2 S)π

0

π

0

) = (3.79 ± 0.24 ± 0.47) × 10

−3

B (Υ(5 S ) → Υ(3 S

0

π

0

) = (2.09 ± 0.51 ± 0.34) × 10

−3

NEW In agreement with isospin relations cf.

B Υ(5S)Υ(1S)π+π

= (4.45±0.16±0.35)×10−3 B Υ(5S)Υ(2S)π+π

= (7.97±0.31±0.96)×10−3 B Υ(5S)Υ(3S)π+π = (2.28±0.19±0.36)×10−3

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 16/51

16

/

51

(17)

Dalitz analysis of Υ(5 S ) → Υ( nS0 π 0

Analysis procedure is the same as for charged pions

S(s1,s2) =A(Zb1) +A(Zb2) +A(f0(980)) +A(f2(1275)) +C1NR+C2NRm2(ππ)

0 10 20 30

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 M(Y(1S) )max, (GeV/c2)

(Events/20 MeV/c2) (a)(�S) � �

0 10 20 30 40 50 60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M(π0π0), (GeV/c2)

(Events/50 MeV/c2) (b)

0 5 10 15 20 25 30 35

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 M(Y(2S) )max, (GeV/c2)

(Events/10 MeV/c2) (a)(�S) � �

w/Z( )b

w/oZ( )b

0 10 20 30 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M(π0π0), (GeV/c2)

(Events/10 MeV/c2) (b)

0 10 20 30

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 M(Y(1S)π)max, (GeV/c2)

(Events/20 MeV/c2) (a)

0 10 20 30 40 50 60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M(π0π0), (GeV/c2)

(Events/50 MeV/c2) (b)

0 10 20 30

9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

M(Y(1S)π)min, (GeV/c2)

(Events/20 MeV/c2) (c)

FIG. 3. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(1S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZ0b’s, respectively. Hatched histograms show the background components.

0 5 10 15 20 25 30 35

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 M(Y(2S)π)max, (GeV/c2)

(Events/10 MeV/c2) (a)

0 10 20 30 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M(π0π0), (GeV/c2)

(Events/10 MeV/c2) (b)

0 5 10 15 20 25 30 35

10.1 10.2 10.3 10.4 10.5

M(Y(2S)π)min, (GeV/c2)

(Events/10 MeV/c2) (c)

FIG. 4. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(2S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZb0’s, respectively. Solution A is shown.

Both solutions give non-distinguishable plots. Hatched histograms show the background components.

0 6 12 18

10.58 10.6 10.62 10.64 10.66 10.68 10.7 10.72 10.74 M(Y(3S)π0)max, (GeV/c2)

(Events/4 MeV/c2) (a)

0 6 12 18

0.25 0.3 0.35 0.4 0.45 0.5 0.55

M(π0π0), (GeV/c2)

(Events/10 MeV/c2) (b)

0 6 12 18

10.48 10.5 10.52 10.54 10.56 10.58 10.6 10.62 10.64 M(Y(3S)π0)min, (GeV/c2)

(Events/4 MeV/c2) (c)

FIG. 5. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(3S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZ0b’s, respectively. Hatched histograms show the background components.

TABLE V. Summary of results on fractions of individual channels in Υ(nS)π0π0final state.

Fractions, % Υ(1S) Υ(2S) solution A Υ(2S) solution B Υ(3S)

Z0b(10610) 0.9+2.2+0.5−0.9−0.3(<4.6) 13.5+6.8+3.2−2.7−4.4 25.4+6.2+4.2−5.9−11 84+17+14−23−11 Z0b(10650) 0.6+2.5+0.5−0.6−0.3(<4.8) 2.7+3.0+1.5−1.4−1.2(<8.0) 2.7+5.8+1.2−1.6−1.2(<12.4) 4.3+2.4+3.5−2.2−1.9(<10.9) f2(1275) 26.3±4.2+7.8−4.5 3.9+3.4+3.8−2.0−2.1 8.7+4.6+3.9−2.0−4.5 Total S-wave 72.4±4.7+5.6−3.4 95.5+5.2+6.0−6.2−6.5 110+7+6−9−18 65+12+18−15−17

Sum 100 116 145 153

(�S) � �

0 10 20 30

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 M(Y(1S)π)max, (GeV/c2)

(Events/20 MeV/c2) (a)

0 10 20 30 40 50 60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M(π0π0), (GeV/c2)

(Events/50 MeV/c2) (b)

0 10 20 30

9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

M(Y(1S)π)min, (GeV/c2)

(Events/20 MeV/c2) (c)

FIG. 3. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(1S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZ0b’s, respectively. Hatched histograms show the background components.

0 5 10 15 20 25 30 35

10.4 10.45 10.5 10.55 10.6 10.65 10.7 10.75 M(Y(2S)π)max, (GeV/c2)

(Events/10 MeV/c2) (a)

0 10 20 30 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M(π0π0), (GeV/c2)

(Events/10 MeV/c2) (b)

0 5 10 15 20 25 30 35

10.1 10.2 10.3 10.4 10.5

M(Y(2S)π)min, (GeV/c2)

(Events/10 MeV/c2) (c)

FIG. 4. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(2S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZ0b’s, respectively. Solution A is shown.

Both solutions give non-distinguishable plots. Hatched histograms show the background components.

0 6 12 18

10.58 10.6 10.62 10.64 10.66 10.68 10.7 10.72 10.74 M(Y(3S)π0)max, (GeV/c2)

(Events/4 MeV/c2) (a)

0 6 12 18

0.25 0.3 0.35 0.4 0.45 0.5 0.55

M(π0π0), (GeV/c2)

(Events/10 MeV/c2) (b)

0 6 12 18

10.48 10.5 10.52 10.54 10.56 10.58 10.6 10.62 10.64 M(Y(3S)π0)min, (GeV/c2)

(Events/4 MeV/c2) (c)

FIG. 5. Comparison of the fit results (open histograms) with experimental data (points with error bars) for Υ(3S)π0π0events in the signal region. Red and blue open histograms show the fit with and withoutZ0b’s, respectively. Hatched histograms show the background components.

TABLE V. Summary of results on fractions of individual channels in Υ(nS)π0π0final state.

Fractions, % Υ(1S) Υ(2S) solution A Υ(2S) solution B Υ(3S)

Z0b(10610) 0.9+2.2+0.5−0.9−0.3(<4.6) 13.5+6.8+3.2−2.7−4.4 25.4+6.2+4.2−5.9−11 84+17+14−23−11 Z0b(10650) 0.6+2.5+0.5−0.6−0.3(<4.8) 2.7+3.0+1.5−1.4−1.2(<8.0) 2.7+5.8+1.2−1.6−1.2(<12.4) 4.3+2.4+3.5−2.2−1.9(<10.9) f2(1275) 26.3±4.2+7.8−4.5 3.9+3.4+3.8−2.0−2.1 8.7+4.6+3.9−2.0−4.5 Total S-wave 72.4±4.7+5.6−3.4 95.5+5.2+6.0−6.2−6.5 110+7+6−9−18 65+12+18−15−17

Sum 100 116 145 153

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 17/51

17

/

51

(18)

Results of Dalitz plot analysis

Fit fractions

State Υ(1S) Υ(1S) Υ(3S)

solution A solution B

Z

b0

< 3.5 13.5 ± 4.0 ± 1.8 30.0 ± 6.1 ± 3.6 44 ± 11 ± 3 Z

b00

< 3.5 < 7 < 13 4.2 at 90% C.L.

Cf. [arxiv:1207.4345]

Z

b+

2.54

+0.87−0.75

19.6

+4.0−3.2

26.8

+6.8−4.2

Z

b0+

1.04

+0.65−0.33

5.8

+1.5−1.8

11.0

+4.3−2.4

• Fit fractions of neutral and charged Z

b

s are consistent Υ(2 S

0

π

0

Υ(3 S

0

π

0

Combined

Significance of Z

b

4.9σ 4.3σ 6.5σ

• No significant signal found in Υ(1 S

0

π

0

, but existence not excluded

• Υ(nS)π

0

π

0

channels are consistent with Z

b

states being isotriplets

Marko Petrič marko.petric@ijs.si Spectroscopy and Resonances at B-Factories 18/51

18

/

51

Reference

POVEZANI DOKUMENTI

The comparison of the experimental data on the rheological properties of the wheel steel with the results of the computer simulation allowed us to determine, and afterwards to

The data shows that companies that carry out activities identified by the model of open innovation, have on average also more likely developed R&amp;D departments and

The comparison of the three regional laws is based on the texts of Regional Norms Concerning the Protection of Slovene Linguistic Minority (Law 26/2007), Regional Norms Concerning

When the first out of three decisions of the Constitutional Court concerning special rights of the Romany community was published some journalists and critical public inquired

if for a given problem instance π ∈ Π, algorithm A terminates returning solution s, s is guaranteed to be a correct solution of π for any given instance π ∈ Π, the run-time of

● Ensure that the public sector and areas of public interests, such as health and care, education, transport, and the cultural and creative sectors, can deploy and access

• If we randomly split the training data into 2 parts, and fit decision trees on both parts, the results of different runs could be quite different.. • We would like to have

Current domains: Smart Cities, Smart Agrifood, Smart Water, Smart Energy, Smart Environment, Smart Robotics, Smart Sensoring, Cross sector, Smart Aeronautics, Smart Destination.