• Rezultati Niso Bili Najdeni

Bibliografia

In document 000378045.pdf - PPM GUMed (Strani 40-47)

• 1. Dąbrowiecki S. Fizjologia i patofizjologia procesu gojenia ran. Pol Med Paliat 2003; T. 2, (4) s. 283

• 2. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992; 13 : 606-8

• 3. July 2013 CDC/NHSN protocol Clarifications. Centers for Disease Control and Prevention (online) 2013; http://www.cdc.gov/nhsn/pdfs/pscmanual/

• 4. Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 2004; 38, 1706–15

• 5. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 1999; 20, 250–80

• 6. Rahman MH, Anson J. Peri-operative antibacterial prophylaxis. Pharm J 2004; 272, 743–5

• 7. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136, E359–86

• 8. Gil-Londoño JC, Nagles-Pelaez JA, Maya-Salazar WA, Madrid J, Maya-Restrepo MA, Agudelo-Pérez RA, Ochoa J. Surgical site infection after breast cancer surgery at 30 days and associated factors. Infectio 2017; 21, 96–101

• 9. Zhao X, Wu X, Dong J, Liu Y, Zheng L, Zhang L. A Meta-analysis of Postoperative Complications of Tissue Expander/Implant Breast Reconstruction Using Acellular Dermal Matrix. Aesthetic Plast Surg 2015; 39, 892–901.

• 10. Olsen MA, Lefta M, Dietz JR, Brandt KE, Aft R, Matthews R, Mayfield J, Fraser VJ. Risk factors for surgical site infection after major breast operation. J Am Coll Surg 2008; 207, 326–35

• 11. Jankau J, Renkielska A. Powikłania związane z zabiegami rekonstrukcji piersi.

Forum Med Rodz 2011; 5, 302-09

• 12. Wekwejt M, Dziaduszewska M, Pałubicka A. The problem of infections associated with implants – an overwiev. Eur J Med Technol - nr 4(21) (2018), s.19-26

• 13. Throckmorton AD, Baddour LM, Hoskin TL, Boughey JC, Degnim AC.

Microbiology of surgical site infections complicating breast surgery. Surg Infect (Larchmt) 2010; 11, 355–9

• 14. Franchelli S, Pesce M, Baldelli I, Marchese A, Santi P, De Maria A. Analysis of clinical management of infected breast implants and of factors associated to successful breast pocket salvage in infections occurring after breast reconstruction. Int J Infect Dis 2018; 71, 67–72

• 15. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33, 5967–82

• 16. Lee JH, Wang H, Kaplan JB, Lee WY. Effects of Staphylococcus epidermidis on osteoblast cell adhesion and viability on a Ti alloy surface in a microfluidic co-culture environment. Acta Biomater 2010; 6, 4422–9

• 17. Wójkowska-Mach J, Różońska A, Bulanda M. Nadzór epidemiologiczny nad zakażeniami miejsca operowanego. Zakażenia 2002; 3-4: 5-17

• 18. Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime- producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37, 318-26

• 19. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science, Academic Press, San Diego, 1996

• 20. Raghavendra GM, Varaprasad K, Jayaramudu T. Biomaterials: Design, Development and Biomedical Applications, Nanotechnology Applications for Tissue Engineering. (2015) 21–44

• 21. Marciniak J. Biomateriały. Wydawnictwo Politechniki Śląskiej, Gliwice, 2013

• 22. Anderson N. Lawsuit Science: Lessons from the Silicone Breast Implant Controversy. New York Law School Law Review 1997; 41, 401–7

• 23. Stevens WG, Hirsch EM, Stoker DA, Cohen R. In vitro deflation of pre-filled saline breast implants. Plast Reconstr Surg 2006; 118, 347–9

• 24. Tanne JH. FDA approves silicone breast implants 14 years after their withdrawal.

BMJ. 2006; 333, 1139

• 25. Świeczko-Żurek B. Biomateriały, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2009

• 26. Malviya R. Extraction characterization and evaluation of selected mucilage as pharmaceutical excipient. Polim Med 2011; 41, 39–44

• 27. Swieczko-Zurek B, Palubicka A, Krzeminski M. The reactions occuring /on the implant as a result of contact with human tissue. Engineering of Biomaterials/Inżynieria Materiałowa 2009; 12, (89-91), 38-9

• 28. Zieliński A, Świeczko-Żurek B, Ossowska A. Environmental degradation of Ti alloys in artificial saliva and a role of fluorides. Inżynieria Materiałowa 2014; 35, 225- 31

• 29. Świeczko-Żurek B. The allergic and irritating reactions to metallic implants with trauma-orthopaedic patients. International Journal of New Technology and Research 2016; 2, s. 50-6

• 30. Zieliński A, Świeczko-Żurek B, Sobieszczyk S. Estimation of the expected effects of different surface modifications on mechanical, chemical and biological behaviour of endoprotheses. Inżynieria Biomatriałów/Engineering of Biomaterials 2006; 9, (58-60), 217-9

• 31. Świeczko-Żurek B, Bartmański M. Investigations of titanium implants covered with hydroxyapatite layer. Advances in Materials Science 2016; 16, 78-86

• 32. Wekwejt M, Moritz N, Świeczko-Żurek B, Pałubicka A. Biomechanical testing of bioactive bone cements – a comparison of the impact of modifiers: antibiotics and nanometals. Polym Test 2018; 70, 234-43

• 33. Pałubicka A, Czubek J, Wekwejt M. Effect of aeration of antibiotic-loaded bone cement on its properties and bactericidal effectiveness. Minerva Ortop Traumatol 2019; 70, 78-85

• 34. Wekwejt M, Pałubicka A, Świeczko-Żurek B. Antibacterial evaluation of bioactive modifiers of bone cements: antibiotics, nanometals and chitosan.

EUROPEAN JOURNAL OF MEDICAL TECHNOLOGIES. 2018; 3(20), 6-10.

• 35. Świeczko-Żurek B, Wekwejt M, Pałubicka A. Degradation of implantable materials – in vivo and in vitro research EUROPEAN JOURNAL OF MEDICAL TECHNOLOGIES 2017; 4(17), 1-12

• 36. Łaskawiec J, Michalik R. Zagadnienia teoretyczne i aplikacyjne w implantach, Wydawnictwo Politechniki Śląskiej, Gliwice, 2002; wyd.1, s.170

• 37. Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 2018; 66, 6–22

• 38. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008; 16, 496-506

• 39. Bryers JD. Medical biofilms. Biotechnol Bioeng 2008; 100, 1-18

• 40. Talsma SS. Biofilms on medical devices. Home Healthc Nurse 2007; 25, 589-94

• 41. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJAM, Geertsma RE. Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment.

Nanotoxicology 2009; 3, 109–38

• 42. Monds RD, O´Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17: 73-87

• 43. Aparna MS, Yadav S. Biofilms: microbes and disease. Braz J Infect Dis 2008; 12, 526-30.

• 44. Monroe D. Looking for chinks in the armor of bacterial biofilms, PLoS Biol 2007;

5, 2458– 61

• 45. Jain A, Gupta Y, Agrawal R, Khare P, Jain SK. Biofilms-a microbial life perspective: a critical review. Crit Rev Ther Drug Carrier Syst 2007; 24, 393-443.

• 46. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009; 11, 279-88

• 47. Irie Y, Parsek MR. Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol 2008; 332, 67-84

• 48. Świeczko-Żurek B, Pałubicka A, Krzemiński M, Supernak M. Microbiological corossion of metallic products as a result of biofilm. Advances in Materials Science 2008; 8 (3), 49-54

• 49. Supernak-Marczewska M, Świeczko-Żurek B. Reactions on the surface of the implant under the influence of biofilm. Advances in Materials Science 2010; 10 (4), s. 5-11

• 50. Radovanovic Z, Jokić B, Veljović D, Dimitrijević S, Kojić V, Petrović R, . Janaćković D. Antimicrobial activity and biocompatibility of Ag +- and Cu2 +-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl Surf Sci 2014; 307, 513–9

• 51. Świeczko-Żurek B, Inkielewicz-Stępniak I, Siwicka K. The influence of biological environment on the silver coated implants. Int J Sci: Basic Appl Res 2016; 26, 341-55

• 52. Jarzembowski T., Naumiuk Ł., Pałubicka A. Prevalance of genes involved in pili and biofilm formation and in vitro adherence properties of medical and fecal strains of Enterococcus faecalis isolated in Gdańsk. Microbial Ecology in Health and Disease 2009; 21: 100-3

• 53. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 2001;

67: 4538–45

• 54. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 2004;

72, 6032–9

• 55. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR, Foster TJ. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 2010; 192, 5663–73

In document 000378045.pdf - PPM GUMed (Strani 40-47)

POVEZANI DOKUMENTI