interaktivni čelni del, Kubernetes za orkestracijo vsebnikov in MQTT za do-stavo rezultatov metode inteligence do končnega uporabnika.
7.3 Nadaljnje delo
V trenutni različici aplikacije mora uporabnik sam izbrati vozlišče, kamor želi namestiti metodo umetne inteligence. Z algoritmi, ki bi upoštevali zasedenost virov vozlišča, njegovo ustreznost in zmožnost doseganja optimalnih metrik kakovosti storitve, bi lahko samodejno izbrali najbolj ustrezno vozlišče. Na ta način bi dosegli, da je obremenitev vozlišč enakomerno razporejena in da je izkušnja končnih uporabnikov čim boljša.
Poleg spletne aplikacije bi lahko razvili tudi mobilno aplikacijo, ki bi uporabnikom omogočala analizo videotoka, ki bi ga snemali s pomočjo kamere na mobilnem telefonu. Kot primer uporabe lahko predstavimo biologa v divjini, ki se sreča z njemu doslej neznano živalsko vrsto. Z uporabo StreamAI mobilne aplikacije bi začel snemati videotok živali, metoda umetne inteligence za razpoznavo živalske vrste pa bi mu v realnem času izpisovala živali, ki so vidne na videotoku. Na ta način bi imeli omogočen dostop do storitve platforme ne glede na to, kateri tip naprave uporabljamo.
Trdno verjamemo, da smo z razvito aplikacijo odprli številne možnosti uporabe različnim tipom uporabnikov. S časom bo na platformi na voljo vse več virov, kar bo pripomoglo k zadovoljstvu uporabnikov, saj bodo zagotovo našli tiste, ki jim ustrezajo.
Literatura
[1] R. Vlada, Slovenska strategija pametne specializacije s4, Pridobljeno 3 (2015) 2018.
[2] B. Penzenstadler, A. Raturi, D. Richardson, B. Tomlinson, Safety, se-curity, now sustainability: The nonfunctional requirement for the 21st century, IEEE software 31 (3) (2014) 40–47.
[3] R. Xu, Y. Chen, E. Blasch, G. Chen, Blendcac: A blockchain-enabled decentralized capability-based access control for iots, in: 2018 IEEE In-ternational Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physi-cal and Social Computing (CPSCom) and IEEE Smart Data (Smart-Data), IEEE, 2018, pp. 1027–1034.
[4] H. Es-Samaali, A. Outchakoucht, J. P. Leroy, A blockchain-based access control for big data, International Journal of Computer Networks and Communications Security 5 (7) (2017) 137.
[5] L. M. Bach, B. Mihaljevic, M. Zagar, Comparative analysis of block-chain consensus algorithms, in: 2018 41st International Convention on Information and Communication Technology, Electronics and Microe-lectronics (MIPRO), IEEE, 2018, pp. 1545–1550.
[6] C. Cachin, M. Vukolić, Blockchain consensus protocols in the wild, arXiv preprint arXiv:1707.01873 (2017).
97
[7] Z. Zheng, S. Xie, H. Dai, X. Chen, H. Wang, An overview of blockchain technology: Architecture, consensus, and future trends, in: 2017 IEEE international congress on big data (BigData congress), IEEE, 2017, pp.
557–564.
[8] L. Tseng, L. Wong, Towards a sustainable ecosystem of intelligent tran-sportation systems, in: 2019 IEEE international conference on perva-sive computing and communications workshops (PerCom Workshops), IEEE, 2019, pp. 403–406.
[9] Y. Qian, Y. Jiang, J. Chen, Y. Zhang, J. Song, M. Zhou, M. Pustišek, Towards decentralized iot security enhancement: A blockchain appro-ach, Computers & Electrical Engineering 72 (2018) 266–273.
[10] M. Kolhar, F. Al-Turjman, A. Alameen, M. M. Abualhaj, A three la-yered decentralized iot biometric architecture for city lockdown during covid-19 outbreak, Ieee Access 8 (2020) 163608–163617.
[11] M. Štefanič, V. Stankovski, A review of technologies and applicati-ons for smart capplicati-onstruction, in: Proceedings of the Institution of Civil Engineers-Civil Engineering, Vol. 172, Thomas Telford Ltd, 2018, pp.
83–87.
[12] P. Kochovski, V. Stankovski, Algorithms for a smart construction en-vironment, in: International Symposium on Algorithmic Aspects of Cloud Computing, Springer, 2019, pp. 1–14.
[13] D. Ståhl, K. Hallén, J. Bosch, Achieving traceability in large scale continuous integration and delivery deployment, usage and validation of the eiffel framework, Empirical Software Engineering 22 (3) (2017) 967–995.
[14] P. Kochovski, S. Kum, J. Moon, A. Vujić, V. Stankovski, Smart con-tract for cross-border ai model management, in: International
Con-LITERATURA 99
ference on the Economics of Grids, Clouds, Systems, and Services, Springer, 2021, pp. 215–222.
[15] S. S. Gill, S. Tuli, M. Xu, I. Singh, K. V. Singh, D. Lindsay, S. Tuli, D. Smirnova, M. Singh, U. Jain, et al., Transformative effects of iot, blockchain and artificial intelligence on cloud computing: Evolution, vision, trends and open challenges, Internet of Things 8 (2019) 100118.
[16] J. Grabis, V. Stankovski, R. Zarin,š, Blockchain enabled distributed storage and sharing of personal data assets, in: 2020 IEEE 36th Inter-national Conference on Data Engineering Workshops (ICDEW), IEEE, 2020, pp. 11–17.
[17] P. Kochovski, V. Stankovski, Building applications for smart and safe construction with the decenter fog computing and brokerage platform, Automation in construction 124 (2021) 103562.
[18] S. Singh Gill, S. Tuli, M. Xu, I. Singh, K. Vijay Singh, D. Lindsay, S. Tuli, D. Smirnova, M. Singh, U. Jain, et al., Transformative ef-fects of iot, blockchain and artificial intelligence on cloud computing:
Evolution, vision, trends and open challenges, arXiv e-prints (2019) arXiv–1911.
[19] F. Þ. Hjálmarsson, G. K. Hreiðarsson, M. Hamdaqa, G. Hjálmt`ysson, Blockchain-based e-voting system, in: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), IEEE, 2018, pp. 983–986.
[20] B. Wang, J. Sun, Y. He, D. Pang, N. Lu, Large-scale election based on blockchain, Procedia Computer Science 129 (2018) 234–237.
[21] T. Moura, A. Gomes, Blockchain voting and its effects on election transparency and voter confidence, in: Proceedings of the 18th annual international conference on digital government research, 2017, pp. 574–
575.
[22] M. Raikwar, S. Mazumdar, S. Ruj, S. S. Gupta, A. Chattopadhyay, K.-Y. Lam, A blockchain framework for insurance processes, in: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), IEEE, 2018, pp. 1–4.
[23] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, V. Santamaría, Blockchain and smart contracts for insurance: Is the technology mature enough?, Future Internet 10 (2) (2018) 20.
[24] L. Zhou, L. Wang, Y. Sun, Mistore: a blockchain-based medical insu-rance storage system, Journal of medical systems 42 (8) (2018) 1–17.
[25] R. Brophy, Blockchain and insurance: a review for operations and re-gulation, Journal of Financial Regulation and Compliance (2019).
[26] L. Du, T. Wo, R. Yang, C. Hu, Cider: a rapid docker container de-ployment system through sharing network storage, in: 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City;
IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), IEEE, 2017, pp. 332–339.
[27] S. S. Krishnan, R. K. Sitaraman, Video stream quality impacts vie-wer behavior: inferring causality using quasi-experimental designs, IEEE/ACM Transactions on Networking 21 (6) (2013) 2001–2014.
[28] G. Li, J. Wang, J. Wu, J. Song, Data processing delay optimization in mobile edge computing, Wireless Communications and Mobile Com-puting 2018 (2018).
[29] B. Ragavendiran, D. Prabhu, et al., Monetization of private data using blockchain ensuring control and ownership of the user data, Internati-onal Journal of Progressive Research in Science and Engineering 2 (8) (2021) 17–19.
LITERATURA 101
[30] T. F. Stafford, H. Treiblmaier, Characteristics of a blockchain ecosy-stem for secure and sharable electronic medical records, IEEE Tran-sactions on Engineering Management 67 (4) (2020) 1340–1362.
[31] R. Miranda, M. L. Pardal, A. Grilo, Sensmart: sensor data market for the internet of things, in: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp. 739–746.
[32] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, A. Y. Zomaya, Edge in-telligence: The confluence of edge computing and artificial intelligence, IEEE Internet of Things Journal 7 (8) (2020) 7457–7469.
[33] V. Mugunthan, R. Rahman, L. Kagal, Blockflow: An accountable and privacy-preserving solution for federated learning, arXiv preprint arXiv:2007.03856 (2020).
[34] W. De Brouwer, M. Borda, Neuron: decentralized artificial intelligence, distributing deep learning to the edge of the network (2017).
[35] M. Debe, K. Salah, M. H. U. Rehman, D. Svetinovic, Monetization of services provided by public fog nodes using blockchain and smart contracts, IEEE Access 8 (2020) 20118–20128.
[36] M. F. Lungu, Reverse engineering software ecosystems, Ph.D. thesis, Università della Svizzera italiana (2009).
[37] R. Coelho, R. Braga, J. M. David, M. Dantas, V. Stroele, F. Cam-pos, Integrating blockchain for data sharing and collaboration support in scientific ecosystem platform, in: Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, p. 264.
[38] M. Viljainen, M. Kauppinen, Software ecosystems: A set of mana-gement practices for platform integrators in the telecom industry, in:
International Conference of Software Business, Springer, 2011, pp. 32–
43.
[39] J. Bosch, From software product lines to software ecosystems., in:
SPLC, Vol. 9, 2009, pp. 111–119.
[40] M. Cataldo, J. D. Herbsleb, Architecting in software ecosystems: in-terface translucence as an enabler for scalable collaboration, in: Pro-ceedings of the Fourth European Conference on Software Architecture:
Companion Volume, 2010, pp. 65–72.
[41] J. Bosch, P. Bosch-Sijtsema, Coordination between global agile teams:
from process to architecture, in: Agility Across Time and Space, Sprin-ger, 2010, pp. 217–233.
[42] R. Kazman, M. Gagliardi, W. Wood, Scaling up software architecture analysis, Journal of Systems and Software 85 (7) (2012) 1511–1519.
[43] K. van Ingen, J. van Ommen, S. Jansen, Improving activity in commu-nities of practice through software release management, in: Proceedings of the International Conference on Management of Emergent Digital EcoSystems, 2011, pp. 94–98.
[44] J. van Angeren, V. Blijleven, S. Jansen, Relationship intimacy in soft-ware ecosystems: a survey of the dutch softsoft-ware industry, in: Proce-edings of the International Conference on Management of Emergent Digital EcoSystems, 2011, pp. 68–75.
[45] I. Van Den Berk, S. Jansen, L. Luinenburg, Software ecosystems: a software ecosystem strategy assessment model, in: Proceedings of the Fourth European Conference on Software Architecture: Companion Volume, 2010, pp. 127–134.
[46] S. Jansen, S. Brinkkemper, J. Souer, L. Luinenburg, Shades of gray:
Opening up a software producing organization with the open software enterprise model, Journal of Systems and Software 85 (7) (2012) 1495–
1510.
LITERATURA 103
[47] S. Fricker, Requirements value chains: Stakeholder management and requirements engineering in software ecosystems, in: International Working Conference on Requirements Engineering: Foundation for Software Quality, Springer, 2010, pp. 60–66.
[48] W. Scacchi, T. A. Alspaugh, Understanding the role of licenses and evolution in open architecture software ecosystems, Journal of Systems and Software 85 (7) (2012) 1479–1494.
[49] K. Mizushima, Y. Ikawa, A structure of co-creation in an open source software ecosystem: A case study of the eclipse community, in: 2011 Proceedings of PICMET’11: Technology Management in the Energy Smart World (PICMET), IEEE, 2011, pp. 1–8.
[50] P. H. Riis, P. Schubert, Upgrading to a new version of an erp system:
a multilevel analysis of influencing factors in a software ecosystem, in:
2012 45th Hawaii International Conference on System Sciences, IEEE, 2012, pp. 4709–4718.
[51] K. M. Popp, Goals of software vendors for partner ecosystems–a practi-tioner s view, in: International Conference of Software Business, Sprin-ger, 2010, pp. 181–186.
[52] J. te Molder, B. van Lier, S. Jansen, Clopenness of systems: The in-terwoven nature of ecosystems., in: IWSECO@ ICSOB, Citeseer, 2011, pp. 52–64.
[53] H. B. Christensen, K. M. Hansen, M. Kyng, K. Manikas, Analysis and design of software ecosystem architectures–towards the 4s telemedicine ecosystem, Information and Software Technology 56 (11) (2014) 1476–
1492.
[54] Y. Hrinchenko, et al., The ecosystem approach to the aviation industry development policy, Journal of Applied Management and Investments 9 (2) (2020) 71–84.
[55] Q. Hu, M. R. Asghar, S. Zeadally, Blockchain-based public ecosystem for auditing security of software applications, Computing (2021) 1–23.
[56] A. Longo, M. Zappatore, S. B. Navathe, The unified chart of mobility services: Towards a systemic approach to analyze service quality in smart mobility ecosystem, Journal of Parallel and Distributed Compu-ting 127 (2019) 118–133.
[57] D. A. Menasce, Qos issues in web services, IEEE internet computing 6 (6) (2002) 72–75.
[58] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Tech.
rep., Manubot (2019).
[59] S. Raval, Decentralized applications: harnessing Bitcoin’s blockchain technology, "O’Reilly Media, Inc.", 2016.
[60] V. Buterin, et al., A next-generation smart contract and decentralized application platform, white paper 3 (37) (2014).
[61] Decentralised technologies for orchestrated cloud-to-edge intelligence:
DECENTER, Dosegljivo: https://www.decenter-project.eu/, [Do-stopano: 15.1.2022].
[62] I. L. Awalu, P. H. Kook, J. S. Lim, Development of a distributed block-chain evoting system, in: Proceedings of the 2019 10th International Conference on E-business, Management and Economics, 2019, pp. 207–
216.
[63] How blockchain can make electronic voting more secure, Dosegljivo:
https://blogs.lse.ac.uk/usappblog/2020/09/25/long-read-how-blockchain-can-make-electronic-voting-more-secure/, [Dostopano: 10.10.2021].
[64] A. Bogner, M. Chanson, A. Meeuw, A decentralised sharing app run-ning a smart contract on the ethereum blockchain, in: Proceedings of
LITERATURA 105
the 6th International Conference on the Internet of Things, 2016, pp.
177–178.
[65] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci, N. Antonopoulos, Video stream analysis in clouds: An object detection and classification framework for high performance video analytics, IEEE Transactions on Cloud Computing 7 (4) (2016) 1152–1167.
[66] G. Medioni, I. Cohen, F. Brémond, S. Hongeng, R. Nevatia, Event de-tection and analysis from video streams, IEEE Transactions on pattern analysis and machine intelligence 23 (8) (2001) 873–889.
[67] D. Nagothu, R. Xu, S. Y. Nikouei, Y. Chen, A microservice-enabled ar-chitecture for smart surveillance using blockchain technology, in: 2018 IEEE international smart cities conference (ISC2), IEEE, 2018, pp.
1–4.
[68] M. Bramberger, J. Brunner, B. Rinner, H. Schwabach, Real-time vi-deo analysis on an embedded smart camera for traffic surveillance, in:
Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Tech-nology and Applications Symposium, 2004., IEEE, 2004, pp. 174–181.
[69] F. Imbault, M. Swiatek, R. De Beaufort, R. Plana, The green block-chain: Managing decentralized energy production and consumption, in: 2017 IEEE International Conference on Environment and Elec-trical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), IEEE, 2017, pp. 1–5.
[70] C. Dai, D. Lin, E. Bertino, M. Kantarcioglu, An approach to evalu-ate data trustworthiness based on data provenance, in: Workshop on Secure Data Management, Springer, 2008, pp. 82–98.
[71] P. O’Donovan, K. Leahy, K. Bruton, D. T. O’Sullivan, An industrial big data pipeline for data-driven analytics maintenance applications in
large-scale smart manufacturing facilities, Journal of Big Data 2 (1) (2015) 1–26.
[72] P. Kochovski, S. Gec, V. Stankovski, M. Bajec, P. D. Drobintsev, Trust management in a blockchain based fog computing platform with tru-stless smart oracles, Future Generation Computer Systems 101 (2019) 747–759.
[73] B. Liu, X. L. Yu, S. Chen, X. Xu, L. Zhu, Blockchain based data integrity service framework for iot data, in: 2017 IEEE International Conference on Web Services (ICWS), IEEE, 2017, pp. 468–475.
[74] L. Zhang, B. Lee, Y. Ye, Y. Qiao, Ethereum transaction performance evaluation using test-nets, in: European Conference on Parallel Pro-cessing, Springer, 2019, pp. 179–190.
[75] S. Rouhani, R. Deters, Performance analysis of ethereum transactions in private blockchain, in: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, 2017, pp.
70–74.
[76] C. Udokwu, A. Norta, Deriving and formalizing requirements of decen-tralized applications for inter-organizational collaborations on block-chain, Arabian Journal for Science and Engineering (2021) 1–18.
[77] Y.-C. Tu, C. Thomborson, E. Tempero, Transparency in software en-gineering, Ph.D. thesis, University of Auckland (2014).
[78] T. D. Breaux, A. I. Antón, K. Boucher, M. Dorfman, Legal require-ments, compliance and practice: an industry case study in accessibility, in: 2008 16th IEEE International Requirements Engineering Confe-rence, IEEE, 2008, pp. 43–52.
[79] T. Nakatani, T. Tsumaki, M. Tsuda, M. Inoki, S. Hori, K. Katamine, Requirements maturation analysis by accessibility and stability, in:
LITERATURA 107
2011 18th Asia-Pacific Software Engineering Conference, IEEE, 2011, pp. 357–364.
[80] M. J. Culnan, The dimensions of accessibility to online information:
Implications for implementing office information systems, ACM Tran-sactions on Information Systems (TOIS) 2 (2) (1984) 141–150.
[81] M. Zaki, P. Forbrig, User-oriented accessibility patterns for smart envi-ronments, in: International Conference on Human-Computer Interac-tion, Springer, 2011, pp. 319–327.
[82] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, A. Piccinno, Com-puter environments for improving end-user accessibility, in: ERCIM Workshop on User Interfaces for All, Springer, 2002, pp. 129–140.
[83] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of software engi-neering (2002).
[84] C. Houy, P. Fettke, P. Loos, Understanding understandability of con-ceptual models–what are we actually talking about?, in: International Conference on Conceptual Modeling, Springer, 2012, pp. 64–77.
[85] C. Treude, J. Middleton, T. Atapattu, Beyond accuracy: Assessing software documentation quality, in: Proceedings of the 28th ACM Jo-int Meeting on European Software Engineering Conference and Sympo-sium on the Foundations of Software Engineering, 2020, pp. 1509–1512.
[86] T. Singh, M. Kumar, Investigating requirements completeness metrics for requirements schemas using requirements engineering approach of data warehouse: A formal and empirical validation, Arabian Journal for Science and Engineering (2021) 1–20.
[87] L. W. Mar, Y.-C. Wu, H. C. Jiau, Recommending proper api code examples for documentation purpose, in: 2011 18th Asia-Pacific Soft-ware Engineering Conference, IEEE, 2011, pp. 331–338.
[88] G. Baralla, A. Pinna, R. Tonelli, M. Marchesi, S. Ibba, Ensuring tran-sparency and traceability of food local products: A blockchain applica-tion to a smart tourism region, Concurrency and Computaapplica-tion: Prac-tice and Experience 33 (1) (2021) e5857.
[89] P. Olsen, M. Borit, How to define traceability, Trends in food science
& technology 29 (2) (2013) 142–150.
[90] T. Moe, Perspectives on traceability in food manufacture, Trends in Food Science & Technology 9 (5) (1998) 211–214.
[91] M. P. Caro, M. S. Ali, M. Vecchio, R. Giaffreda, Blockchain-based traceability in agri-food supply chain management: A practical imple-mentation, in: 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Agriculture-Tuscany), IEEE, 2018, pp. 1–4.
[92] M. Germani, M. Mandolini, M. Marconi, E. Marilungo, A. Papetti, A system to increase the sustainability and traceability of supply chains, Procedia CIRP 29 (2015) 227–232.
[93] S. Garcia-Torres, L. Albareda, M. Rey-Garcia, S. Seuring, Traceability for sustainability–literature review and conceptual framework, Supply Chain Management: An International Journal (2019).
[94] V. Kumar, T. K. Agrawal, L. Wang, Y. Chen, Contribution of trace-ability towards attaining sustaintrace-ability in the textile sector, Textiles and Clothing Sustainability 3 (1) (2017) 1–10.
[95] A. M. Mejías, R. Bellas, J. E. Pardo, E. Paz, Traceability management systems and capacity building as new approaches for improving susta-inability in the fashion multi-tier supply chain, International Journal of Production Economics 217 (2019) 143–158.
[96] C. Liu, J. Li, W. Steele, X. Fang, A study on chinese consumer prefe-rences for food traceability information using best-worst scaling, PloS one 13 (11) (2018) e0206793.
LITERATURA 109
[97] R. K. Rainer, C. G. Cegielski, Introduction to Information Systems:
R. Kelly Rainer, Casey G. Cegielski, Wiley, 2013.
[98] H. Kim, E. A. Lee, Authentication and authorization for the internet of things, IT Professional 19 (5) (2017) 27–33.
[99] D. D. F. Maesa, P. Mori, L. Ricci, Blockchain based access control, in:
IFIP international conference on distributed applications and intero-perable systems, Springer, 2017, pp. 206–220.
[100] A. Hagiu, J. Wright, Do you really want to be an ebay?, Harvard Business Review 91 (3) (2013) 102–108.
[101] A. Hagiu, Strategic decisions for multisided platforms, Top 10 (2015) 4–13.
[102] G. Wood, et al., Ethereum: A secure decentralised generalised transac-tion ledger, Ethereum project yellow paper 151 (2014) (2014) 1–32.
[103] A. M. Antonopoulos, G. Wood, Mastering ethereum: building smart contracts and dapps, O’reilly Media, 2018.
[104] N. Szabo, The idea of smart contracts, Nick Szabo’s papers and concise tutorials 6 (1) (1997).
[105] D. Johnson, A. Menezes, S. Vanstone, The elliptic curve digital signa-ture algorithm (ecdsa), International journal of information security 1 (1) (2001) 36–63.
[106] J. Benet, Ipfs-content addressed, versioned, p2p file system, arXiv pre-print arXiv:1407.3561 (2014).
[107] N. Nizamuddin, K. Salah, M. A. Azad, J. Arshad, M. Rehman, Decen-tralized document version control using ethereum blockchain and ipfs, Computers & Electrical Engineering 76 (2019) 183–197.
[108] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Ca-sallas, S. Gil, Evaluating the monolithic and the microservice archi-tecture pattern to deploy web applications in the cloud, in: 2015 10th Computing Colombian Conference (10CCC), IEEE, 2015, pp. 583–590.
[109] K. Arnold, J. Gosling, D. Holmes, The Java programming language, Addison Wesley Professional, 2005.
[110] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma, O. Gohda, T. Inagaki, A. Koseki, K. Ogata, M. Kawahito, T. Yasue, et al., Ef-fectiveness of cross-platform optimizations for a java just-in-time com-piler, in: Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented programing, systems, languages, and applications, 2003, pp. 187–204.
[111] B. Lewis, D. J. Berg, Multithreaded programming with Java techno-logy, Prentice Hall Professional, 2000.
[112] J. S. Fritzinger, M. Mueller, Java security, White Paper, Sun Microsy-stems, Inc 37 (1996).
[113] S. Oaks, Java security: writing and deploying secure applications,
"O’Reilly Media, Inc.", 2001.
[114] S. Chiaretta, Front-end Development with ASP. NET Core, Angular, and Bootstrap, John Wiley & Sons, 2018.
[115] Html tags, Dosegljivo: http://info.cern.ch/hypertext/WWW/
MarkUp/Tags.html, [Dostopano: 1.1.2022].
[116] C. Boettiger, An introduction to docker for reproducible research, ACM SIGOPS Operating Systems Review 49 (1) (2015) 71–79.
[117] J. R. F. Cacho, K. Taghva, Reproducible research in document analysis and recognition, in: Information technology-new generations, Springer, 2018, pp. 389–395.
LITERATURA 111
[118] J. R. F. Cacho, K. Taghva, The state of reproducible research in computer science, in: 17th International Conference on Information Technology–New Generations (ITNG 2020), Springer, 2020, pp. 519–
524.
[119] M. Shahin, M. A. Babar, L. Zhu, Continuous integration, delivery and deployment: a systematic review on approaches, tools, challenges and practices, IEEE Access 5 (2017) 3909–3943.
[120] L. Chen, Continuous delivery: Huge benefits, but challenges too, IEEE software 32 (2) (2015) 50–54.
[121] B. Fitzgerald, K.-J. Stol, Continuous software engineering: A roadmap and agenda, Journal of Systems and Software 123 (2017) 176–189.
[122] S. Stolberg, Enabling agile testing through continuous integration, in:
2009 agile conference, IEEE, 2009, pp. 369–374.
[123] A. Bhattacharya, Impact of continuous integration on software quality and productivity, Ph.D. thesis, The Ohio State University (2014).
[124] M. Shahin, M. A. Babar, M. Zahedi, L. Zhu, Beyond continuous deli-very: an empirical investigation of continuous deployment challenges, in: 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), IEEE, 2017, pp. 111–120.
[125] C. Chandrasekara, Hands-on github actions.
[126] G. Sayfan, Mastering kubernetes, Packt Publishing Ltd, 2017.
[127] O. Filipova, Learning Vue. js 2, Packt Publishing Ltd, 2016.
[128] P. Halliday, Vue. js 2 Design Patterns and Best Practices: Build enterprise-ready, modular Vue. js applications with Vuex and Nuxt, Packt Publishing Ltd, 2018.
[129] M. Imran, N. Maqbool, H. Shafique, Impact of technological advance-ment on employee performance in banking sector, International Journal of Human Resource Studies 4 (1) (2014) 57.
[130] N. K. Gupta, A. Jain, P. C. Sharma, S. K. Vishwakarma, State of the art and challenges in blockchain applications, in: Smart Systems:
Innovations in Computing, Springer, 2022, pp. 311–320.
[131] J. H. Yoon, P. Pishdad-Bozorgi, State-of-the-art review of blockchain-enabled construction supply chain, Journal of Construction Enginee-ring and Management 148 (2) (2022) 03121008.