• Rezultati Niso Bili Najdeni

Napetost glavnega kondenzatorja v odvisnosti od časa, brez dovajanja energije in

Zaradi pomanjkanja časa ni bila izvedena dodatna analiza o porabi in življenjski dobi ter narejen preizkus digitalnega senzorskega sistema in kalibriranje senzorjev z referenco.

3020 3040 3060 3080 3100 3120 3140 3160 3180 3200

0,0 0,3 0,6 0,8 1,1 1,4 1,7 1,9 2,2 2,5 2,8 3,1 3,3 3,6 3,9 4,2 4,4 4,7 5,0 5,3 5,6 5,8 6,1 6,4 6,7 6,9 7,2 7,5 7,8

Napetost zalogovnika [mV]

Čas delovanja [h]

Zaključek 5

Zadali smo si zgraditi učinkovit in samozadosten IoT merilnik okoljskih parametrov, ki črpa energijo iz perovskitne sončne celice in beleži njene karakteristike.

Uspešno smo razvili senzorsko napravo s porabo pod 10 µA in njen sprejemnik. Pokazali smo samostojen zagon in črpanje energije iz PSC, v točki maksimalne moči, od 400 mV navzgor.

Načrpano energijo smo skladiščili v obliki naboja na superkondenzatorju na vhodu vezja, katerega napetost se je s količino energije spreminjala v razponu nazivne napetosti uporabljeneg procesorja in ostalih komponent. Demonstrirali smo večurno delovanje brez razpoložljive svetlobe. Zbrana energija je bila uporabljena za merjenje intenzitete svetlobe in I-U karakteristike PSC. Za prenos merjenih podatkov na sprejemnik, njihov prikaz in beleženje smo uporabili BLE v načinu enosmerne komunikacije.

Demonstrirana IoT naprava dokazuje, da komercialno dosegljive rešitve na trgu že omogočajo izgradnjo praktične naprave z napajanjem s PSC. Dosežena učinkovitost, skupaj z visokim izkoristkom PSC pomeni, da je tehnologija perovskitnih sončnih celic primerna za aplikacije z omejeno sončno energijo ali velikostjo.

40 Zaključek

Literatura

[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’, J. Am. Chem. Soc., vol. 131, no. 17, pp.

6050–6051, May 2009, doi: 10.1021/ja809598r.

[2] I. Montoya De Los Santos et al., ‘Optimization of CH3NH3PbI3 perovskite solar cells:

A theoretical and experimental study’, Solar Energy, vol. 199, pp. 198–205, Mar. 2020, doi: 10.1016/j.solener.2020.02.026.

[3] N. K. Tailor et al., ‘Recent progress in morphology optimization in perovskite solar cell’, J. Mater. Chem. A, vol. 8, no. 41, pp. 21356–21386, 2020, doi:

10.1039/D0TA00143K.

[4] ‘A Realistic Methodology for 30% Efficient Perovskite Solar Cells | Elsevier Enhanced Reader’.

‘Solar cell efficiency tables (Version 58)’, Progress in Photovoltaics: Research and Applications, vol. 29, no. 7, pp. 657–667, 2021, doi: 10.1002/pip.3444.

[6] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, ‘Solar cell efficiency tables (version 57)’, Progress in Photovoltaics: Research and Applications, vol. 29, no. 1, pp. 3–15, 2021, doi: 10.1002/pip.3371.

[7] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao,

‘Solar cell efficiency tables (version 56)’, Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 629–638, 2020, doi: 10.1002/pip.3303.

[8] Y. Peng et al., ‘Lead-Free Perovskite-Inspired Absorbers for Indoor Photovoltaics’, Advanced Energy Materials, vol. 11, no. 1, p. 2002761, 2021, doi:

10.1002/aenm.202002761.

[9] R. Cheng et al., ‘Tailoring Triple-Anion Perovskite Material for Indoor Light Harvesting with Restrained Halide Segregation and Record High Efficiency Beyond 36%’, Advanced Energy Materials, vol. 9, no. 38, p. 1901980, 2019, doi:

10.1002/aenm.201901980.

[10] S. N. R. Kantareddy et al., ‘Perovskite PV-Powered RFID: Enabling Low-Cost Self-Powered IoT Sensors’, IEEE Sensors Journal, vol. 20, no. 1, pp. 471–478, Jan. 2020, doi: 10.1109/JSEN.2019.2939293.

[11] ‘Understanding Bluetooth Range’, Bluetooth® Technology Website.

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/ (accessed Aug.

02, 2021).

[12] ‘Bluetooth Technology Overview’, Bluetooth® Technology Website.

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/ (accessed Aug. 02, 2021).

[13] ‘Bluetooth Modules & Adaptors | Farnell’. https://si.farnell.com/c/wireless-modules-adaptors/communications-networking-modules/bluetooth-modules-adaptors (accessed Aug. 02, 2021).

42 Literatura

[14] ‘Zigbee Modules / XBee | Farnell’. https://si.farnell.com/w/c/wireless-modules-

adaptors/communications-networking-modules/zigbee-modules-xbee/prl/results?sort=P_PRICE (accessed Aug. 02, 2021).

[15] ‘WLAN Modules & USB Adaptors | Farnell’. https://si.farnell.com/w/c/wireless-

modules-adaptors/communications-networking-modules/wlan-modules-usb-adaptors/prl/results?sort=P_PRICE (accessed Aug. 02, 2021).

[16] ‘RF / Wireless Development Kits | Farnell’. https://si.farnell.com/w/c/development-boards-evaluation-tools/rf-wireless-development-kits/prl/results?st=lora&sort=P_PRICE (accessed Aug. 02, 2021).

[17] ‘ARTIK 053/053s Module Datasheet’. Samsung Semiconductor, Inc. Accessed: Aug.

02, 2021. [Online]. Available: https://www.farnell.com/datasheets/2580014.pdf

[18] ‘CYBLE-212019-00/CYBLE-212023-10, EZ-BLETM PRoCTM Module’, no. 002, p. 38.

[19] ‘LoRa PHY | Semtech’. https://www.semtech.com/lora/what-is-lora (accessed Aug. 02, 2021).

[20] ‘SX1272/73 - 860 MHz to 1020 MHz Low Power Long Range Transceiver’. Accessed:

Aug. 02, 2021. [Online]. Available: https://www.farnell.com/datasheets/2735939.pdf [21] ‘Bluetooth Core Specification’. Bluetooth SIG, 2021. [Online]. Available:

https://www.bluetooth.com/specifications/specs/core-specification/

[22] ‘Bluetooth_Smart_Software-BLE-1.4-API-RM.pdf’. Silicon Labs, 2016. Accessed: Aug.

04, 2021. [Online]. Available: https://www.silabs.com/documents/public/reference-manuals/Bluetooth_Smart_Software-BLE-1.4-API-RM.pdf

[23] ‘Q4_Quarterly_Report_2020.pdf’, Nordic Semiconductor. Accessed: Aug. 11, 2021.

[Online]. Available: https://www.nordicsemi.com/-/media/Investor-Relations-and-

QA/Quartely-Reports/2020/Q4_Quarterly_Report_2020.pdf?la=en&hash=A1F61DA97FFD7749E59 B572F30EFFB047BA96654

[24] ‘Bluetooth Low Energy’. https://www.nordicsemi.com/Products/Bluetooth-Low-Energy (accessed Aug. 11, 2021).

[25] ‘RF Transceivers - 2.4GHz & Above ISM Band | Farnell’.

https://si.farnell.com/c/semiconductors-ics/rf/rf-transceivers-2-4ghz-above-ism-band?st=nrf5 (accessed Aug. 11, 2021).

[26] S. Shead, ‘The global chip shortage could last until 2023’, CNBC, May 12, 2021.

[29] ‘nRF52832 Product Specification’, p. 553.

[30] P. Horowitz and H. Winfield, The Art of Electronics: The x-Chapters. Cambridge University Press, 2020.

[31] F. Donald G. and W. B. H., STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 16th ed.

[32] ‘MAX17220-MAX17225.pdf’. Maxim integrated. Accessed: Aug. 10, 2021. [Online].

Available: https://datasheets.maximintegrated.com/en/ds/MAX17220-MAX17225.pdf

Literatura 43

[33] ‘nanoPower DC-DC Regulators | Maxim Integrated’.

https://www.maximintegrated.com/en/products/power/switching-regulators/step-up-boost/nanopower-dc-dc-regulators.html/tab5 (accessed Aug. 10, 2021).

[34] ‘Boost converter integrated switch | Products | Step-up boost | TI.com’.

https://www.ti.com/power-management/non-isolated-dc-dc-switching-regulators/step-

up-boost/boost-converters-integrated-switch/products.html#p238min=0.3;0.4&p238max=0.4;75 (accessed Aug. 10, 2021).

[35] ‘ADP5090 Datasheet and Product Info | Analog Devices’.

https://www.analog.com/en/products/adp5090.html (accessed Aug. 10, 2021).

[36] ‘SPV1050 - Ultra low power energy harvester and battery charger with embedded MPPT and LDOs - STMicroelectronics’. https://www.st.com/en/power-management/spv1050.html (accessed Aug. 10, 2021).

[37] ‘MCP16251 | Microchip Technology’. https://www.microchip.com/en-us/product/MCP16251 (accessed Aug. 10, 2021).

[38] ‘Voltage Regulators | Farnell’. https://si.farnell.com/c/semiconductors-ics/power-management-ics-pmic/voltage-regulators (accessed Aug. 10, 2021).

[39] ‘MAX1722 1.5µA IQ, Step-Up DC-DC Converters in TSOT and µDFN | Maxim Integrated’. https://www.maximintegrated.com/en/products/power/switching-regulators/MAX1722.html (accessed Aug. 10, 2021).

[40] ‘TPS61222 data sheet, product information and support | TI.com’.

https://www.ti.com/product/TPS61222 (accessed Aug. 10, 2021).

[41] ‘ADP1607 Datasheet and Product Info | Analog Devices’.

https://www.analog.com/en/products/adp1607.html (accessed Aug. 10, 2021).

[42] ‘L6920DC - Synchronous rectifier step up converter - STMicroelectronics’.

https://www.st.com/en/power-management/l6920dc.html (accessed Aug. 10, 2021).

[43] ‘MCP1623 | Microchip Technology’. https://www.microchip.com/en-us/product/MCP1623 (accessed Aug. 10, 2021).

[44] F. Leng, C. M. Tan, and M. Pecht, ‘Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature’, Sci Rep, vol. 5, no. 1, p. 12967, Aug.

2015, doi: 10.1038/srep12967.

[45] Y. Liu, P. Sun, S. Lin, H. Niu, and X. Huang, ‘Self-heating ignition of open-circuit cylindrical Li-ion battery pile: Towards fire-safe storage and transport’, Journal of Energy Storage, vol. 32, p. 101842, Dec. 2020, doi: 10.1016/j.est.2020.101842.

[46] D. B. Murray and J. G. Hayes, ‘Cycle Testing of Supercapacitors for Long-Life Robust Applications’, IEEE Transactions on Power Electronics, vol. 30, no. 5, pp. 2505–2516, May 2015, doi: 10.1109/TPEL.2014.2373368.

[47] Department of Electrical and Electronics Engineering, SRM University, Kattankulathur, India 603203. and Z. S. Iro, ‘A Brief Review on Electrode Materials for Supercapacitor’, Int. J. Electrochem. Sci., pp. 10628–10643, Dec. 2016, doi: 10.20964/2016.12.50.

[48] P. Horowitz and H. Winfield, THE ART OF ELECTRONICS, 3rd ed. Cambridge University Press, 2015.

[49] ‘Nordic Semiconductor Infocenter’.

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_nrf52832_dk%2FUG%2Fnrf 52_DK%2Fhw_meas_current.html (accessed Aug. 11, 2021).

[50] ‘isl88001-isl88002-isl88003-datasheet.pdf’. Renesas, 2021. Accessed: Aug. 11, 2021.

[Online]. Available: https://www.renesas.com/us/en/document/dst/isl88001-isl88002-isl88003-datasheet

44 Literatura

[51] ‘APX803L (MicroProcessor Supervisory IC / Reset IC / Voltage Detector)’.

https://www.diodes.com/part/view/APX803L (accessed Aug. 11, 2021).

[52] ‘NCP302: Voltage Detector Series with Programmable Delay and Complementary Output’. https://www.onsemi.com/products/power-management/voltage-references-supervisors/voltage-supervisors/ncp302 (accessed Aug. 11, 2021).

[53] ‘MAX6895 Ultra-Small, Adjustable Sequencing/Supervisory Circuits | Maxim Integrated’. https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/MAX6895.html (accessed Aug. 11, 2021).

[54] ‘7-Bit Single I2CTM Digital POT with Volatile Memory in SC70’, p. 67, 2009.

[55] ‘MAX1720 SOT23, Switched-Capacitor Voltage Inverters with Shutdown | Maxim Integrated’. https://www.maximintegrated.com/en/products/power/charge-pumps/MAX1720.html (accessed Aug. 15, 2021).

[56] ‘APDS-9151’. https://www.broadcom.com/products/optical-sensors/integrated-ambient-light-and-proximity-sensors/apds-9151 (accessed Aug. 15, 2021).

[57] ‘nRF5 SDK’. https://www.nordicsemi.com/Products/Development-software/nRF5-SDK (accessed Sep. 02, 2021).

[58] ‘SI2329DS-T1-GE3 - Power MOSFET, P Channel, 8 V, 6 A, 0.025 ohm, SOT-23, Surface Mount’. https://si.farnell.com/vishay/si2329ds-t1-ge3/mosfet-p-ch-8v-6a-sot23/dp/2283643 (accessed Aug. 19, 2021).

[59] ‘BLED112 - Silicon Labs’. https://www.silabs.com/wireless/bluetooth/bluegiga-low-energy-legacy-modules/device.bled112 (accessed Aug. 18, 2021).

[60] rCassani, ‘LabVIEW BLE (Bluetooth Low Energy) toolkit’, Jul. 28, 2016.

https://forums.ni.com/t5/Community-Documents/LabVIEW-BLE-Bluetooth-Low-Energy-toolkit/ta-p/3538612 (accessed Aug. 18, 2021).

[61] ‘FT0H105ZF Supercapacitor, EDLC, 1 F, 5.5 V, Radial Leaded, FT Series, +80%, -20%, 7.62 mm’. https://si.farnell.com/kemet/ft0h105zf/cap-1f-5-5v-super-radial/dp/2362070 (accessed Aug. 23, 2021).

Dodatek

46 Dodatek

Priloga A Shema testnega napajalnega vezja 47

Priloga A Shema testnega napajalnega vezja

48 Priloga A Shema testnega napajalnega vezja

Priloga B Uspešen zagon napetostnega dodajalnika MAX17220 iz simulirane PSC 49

Priloga B Uspešen zagon napetostnega dodajalnika MAX17220 iz simulirane PSC

Slika B.1 prikazuje zagon MAX17220, z mejno vrednostjo vhodnega toka in kapacitivnosti, za uspešen zagon.

Slika B.1: Uspešen zagon napetostnega dodajalnika. Izhodna napetost (viola), vhodna (rumena) in signal za omogočanje delovanja napetostnega dodajalnika (modra).

─ Vhod

─ Izhod

─ Omogočanje dodajalnika

50 Priloga B Uspešen zagon napetostnega dodajalnika MAX17220 iz simulirane PSC

Priloga C Program za sprejemanje podatkov 51

Priloga C Program za sprejemanje podatkov

Slika C.1 prikazuje LabVIEW program, uporabljen za beleženje in prikazovanje podatko na sprejemniku. Program zaženemo s povezavo z BLE modulom. Začne se iskanje razpoložljivih naprav. Ko je zaznan promocijski paket naprave s poznanim naslovom, se ta shrani in sprocesira. Sprejeti podatki se beležijo. Uporabnik jih shrani v zunanji dokument z gumbom »SAVE«.

Slika C.1: Prikazovalnik meritev.

52 Priloga C Program za sprejemanje podatkov

Priloga D Shema končnega vezja 53

Priloga D Shema končnega vezja

54 Priloga D Shema končnega vezja

Priloga D Shema končnega vezja 55

56 Priloga D Shema končnega vezja

Priloga D Shema končnega vezja 57

58 Priloga D Shema končnega vezja