• Rezultati Niso Bili Najdeni

5e - 5 1e - 4 1.5e - 4 2e - 4 2.5e - 4

N/A
N/A
Protected

Academic year: 2022

Share "5e - 5 1e - 4 1.5e - 4 2e - 4 2.5e - 4"

Copied!
19
0
0

Celotno besedilo

(1)

ON G 2

CONTINUOUS SPLINE INTERPOLATION

OF CURVES IN R d

EMIL

ZAGAR

FaultyofComputerandInformationSiene,UniversityofLjubljana,Trzaska25

1000Ljubljana,Slovenia. email: emilgollum.fri.uni-lj.si

Abstrat.

Inthis papertheproblem ofG 2

ontinuousinterpolation ofurvesinR d

by poly-

nomialsplinesof degree n isstudied. Theinterpolation of thedata points,and two

tangent diretions at the boundaryis onsidered. The ase n =r+2=d, where r

is thenumberof interiorpoints interpolated by eah segment of the splineurve, is

studiedindetail. Itisshownthattheproblemisuniquelysolvableasymptotially,i.e.,

whenthedatapointsaresampledregularlyandsuÆientlydense,andlieonaregular,

onvexparametriurveinR d

. Inthis ase theoptimal approximation orderisalso

determined.

AMSsubjetlassiation: 65D05,65D07.

Keywords: Splineurve,G 2

ontinuity,interpolation,approximationorder.

1 Introdution.

TheproblemofparametripolynomialinterpolationofdatapointsinR d

has

alreadybeenstudiedin[1℄{[5℄,[7℄,[9℄and[10℄. Perhaps[1℄ gavetherstimpe-

tustothissubjet. In[9℄,aniegeneralapproahofinreasingtheapproxima-

tionorderbyparametripolynomialinterpolationmethodshasbeendeveloped.

Here,weapplythisgeneralapproahto theG 2

ontinuoussplinease.

The geometri ontinuity is usually hosen in geometri design, sine it refers

toapartiularparametrisation,andassuresthatthegeometriinvariantsofthe

urve, i.e., the tangent diretion, the urvature, et., are ontinuous, but re-

movestheinueneoftheparametrisationontheshapeoftheurve. Ofourse,

itis usually suÆientto requireG 2

ontinuity, sine itis almost impossibleto

reognizethedisontinuitiesofthehigherorderderivativesbythehumaneye.

Theproblem initsgeneralformhasalreadybeenonsideredin[5℄and[7℄,and

anbestatedasfollows. Let

B B BBBBBBB:=BBBBBBBBB

n :[

0

;

m

℄!R d

(1.1)

bethepolynomialsplineurveofdegreenomposedbymsegmentswithbreak-

pointsequene

0

<

1

<:::<

m :

(2)

Supposepoints

T T T T T T TT

T

0

;T T T T T T T T

T

1

;:::;T T T T TTTT

T

N 2R

d

; T T T T T T T T

T

j 6=T

T T T T T TT

T

j+1

; j=0;1;:::;N 1;

(1.2)

andtangentdiretions

d d d d d d d d d

0

; ddddddddd

N

; (1.3)

at the boundary points TTTTTTTTT

0 and TTTTTTTTT

N

are given. Find a polynomial spline BBBBBBBBB

denedby(1.1)whihisG 2

ontinuousandinterpolatesgivenpointsandtangent

diretions.

Loally,onthe`-thsegment,BBBBBBBBB anbegivenas

B B B B B B B B

B()=:B B B B B B B B

B

`

` 1

` 1

; 2[

` 1

;

`

℄; `=1;:::;m;

(1.4)

where

` 1 :=

`

` 1

. SineBBBBBBBBBhastointerpolatethedata(1.2)and(1.3),its

`-thpolynomialpieeBBBBBBBBB

`

shouldinterpolaterinteriorandtwoboundarypoints.

Theinterpolatingonditionsonthe`-th segmentnowread

B B B B B B BBB

`

(t

`;j )=TTTTTTTTT

(r+1)(` 1)+j

=:TTTTTTTTT

`;j

; j=0;1;:::;r+1;

(1.5)

where

t

`;0

:=0<t

`;1

<<t

`;r

<t

`;r+1 :=1;

and (t

`;j )

r

j=1

are unknown parametervalues whih have to be determined. It

remainstofulltheGontinuityonditions. TheG 1

ontinuityanbewritten

intheloalparametrisation,i.e., t

` ,0t

`

1,as

d

dt

1 B B B B B B B BB 1

(0) =

0 d d d d d d d d d

0

;

d

dt

`+1 B B B B B B B BB

`+1

(0) =

` d

dt

` B B B B BBBBB

`

(1); `=1;2;:::;m 1;

(1.6)

d

dt

m B B B B BBBBB

m

(1) =

m d d d d ddddd

N

;

andtheG 2

ontinuityrelationsread

d 2

dt 2

`+1 B B BBBBBBB

`+1

(0)= 2

` d

2

dt 2

` B B B B BBBBB

`

(1)+

` d

dt

` B B B B BBBBB

`

(1); `=1;:::;m 1;

(1.7)

where

` and

`

areunknownsand

`

>0. Fig. 1.1showsapartiularpolyno-

mialpieeBBBBBBBBB

`

thatjoinsitsneighbors.

Asalreadyobservedin[5℄,theassumptionthatthenumberofindependentequa-

tionsshould beequaltothenumberofunknownsimpliesthefollowingrelation

dn (d 1)r=3d 2:

(1.8)

Thisleadsto twopratiallyimportantases, n=r+2=dand n=r+1=

2d 1,i.e., theinterpolationbypolynomialsplinesoflowdegree.

(3)

B B B B BBBBB

` 1

B B BBBBBB

B

`

B B B B B B BB

B

`+1

Z

Z

Z

Z

Z

Z

~ d

dt

` B B B B B B B B B

`

(0)

d

dt

` B B B B B B B B

B

`

(1) t

d d

t

T T T

T T

T T

TT

` 1;r+1

=TT T

T T

T T

T T

`;0 T T T T T T T T T

`;1

T T T T TTTTT

`;r

T T TTTTTTT

`;r+1

=TTTTTTTTT

`+1;0

Figure1.1: Apartiularsegmentofthesplineurveandsomeoftheimportant

quantities.

The partiular ased =3 was asymptotially(i.e. for thedata sampled on

aregularurvedense enough)solvedin [5℄. Its extensionto generald, butfor

segmentsonly, anbefoundin [7℄. Herewetakletheompositease. Forthe

seondase,i.e.,n=r+1=2d 1,theapproahexplainedherefailsandwill

requiresomeadditionalresearh.

Themainresultofthepaperanbestatedasfollows.

Theorem1.1. IfthedatapointsaresampledregularlyandsuÆientlydense,

thenthereexistsaG 2

polynomialspline urveBBBBBBBBB,whih interpolates given data

pointsandtangentdiretionsatthe boundary. Theapproximation orderisopti-

mal,i.e., r+4=n+2.

The regularityof data pointmentioned in theabove theorem should be ex-

plained. Itislearthatthesolutiondependsonthestrutureofthedataandwe

annotexpetthattheproblemwillbesolvableforthearbitrarysetofpoints.

Sine theasymptoti analysis will be done,the data points will beonsidered

aspointsonasmoothurve. Theywill besampled regularlyin thesense that

thedistributionof pointsaordingto the arlength remainsthe samefor all

segments. And suÆiently dense means that the neighboring pointsare lose

enoughtoeahother.

It is also learthat the approximationorder is optimal sinewehave r+4

interpolation onditions on eah segment (r +2 interpolated points and two

onditionsfortwojoining segmentsonerningG 1

and G 2

ontinuity, i.e., one

(4)

onditionforeahsegmentatthebreakpoint).

2 The systemofnonlinear equations for n=r+2=d.

In this setion, the system of nonlinear equations (1.5){(1.7) will be trans-

formedfurtherforthispartiularase. Sinen=r+2,thepolynomialurve

B B B B BBBBB

`

(t):=bbbbbbbbb

`

!

` (t)+

r+1

X

j=0 L

`;j (t)TTTTTTTTT

`;j (2.1)

willsatisfytheinterpolationonditions(1.5)on[

` 1

;

`

℄. Here

!

` (t):=

r+1

Y

j=0 (t t

`;j ); L

`;j (t)=

!

` (t)

(t t

`;j )!_

` (t

`;j )

; !_

` :=

d

dt

`

!

` :

Provided t

`;j

are known, the unknown leadingoeÆient vetorbbbbbbbbb

`

anbe ex-

pressedin twodierentways

b b b b bbbbb

`

= [t

`;0

;t

`;0

;t

`;1

;:::;t

`;r

;t

`;r+1

℄BBBBBBBBB

`

= [t

`;0

;t

`;1

;:::;t

`;r

;t

`;r+1

;t

`;r+1

℄BBBBBBBBB

`

: (2.2)

Sinet

`;0

=0,t

`;r+1

=1,andforasmoothf

[x

0

;x

0

;x

1

;:::;x

i

℄f= i

X

j=0 1

_

!(x

j )

[x

0

;x

j

℄f;

(2.3)

theequation(2.2)anberewrittenas

b b b b b b b b

b

`

= 1

_

!

` (0)

_

B B B B B B B B

B

`

(0)+ r+1

X

j=1 1

_

!

` (t

`;j )t

`;j (T

T T T T T T T

T

`;j T T T T T T TT

T

`;0 )

= 1

_

!

` (1)

_

B B B B B B B BB

`

(1)+ r

X

j=0

1

_

!

` (t

`;j )(t

`;j 1)

(TTTTTTTTT

`;j T T TTTTTTT

`;r+1 ):

(2.4)

Inserting(2.1) into (1.7) and using (2.4), (1.6) in order to replae bbbbbbbbb

` , bbbbbbbbb

`+1 by

_

B B B B B B B B B

`

(1),oneonludesthat

_

B B B B B B B BB

`

(1) =

` 0

2

` 0

r

X

j=0



!

` (1)

_

!

` (t

`;j )(t

`;j 1)

(TTTTTTTTT

`;j T T T T T T T TT

`;r+1 )+

r+1

X

j=0



L

`;j (1)TTTTTTTTT

`;j 1

A

0

r+1

X

j=1



!

`+1 (0)

_

!

`+1 (t

`+1;j )t

`+1;j (TTTTTTTTT

`+1;j T T T T T T T TT

`+1;0 )+

r+1

X

j=0



L

`+1;j (0)TTTTTTTTT

`+1;j 1

A 1

A

: (2.5)

Here

`

=



!

`+1 (0)

_

! (0)

`



!

` (1)

_

! (1)

2

`

`

1

:

(5)

Ifwewrite

G G G G G G G G

G

`

0

= r+1

X

j=1



!

`+1 (0)

_

!

`+1 (t

`+1;j )t

`+1;j (T

T T T T T T T

T

`+1;j T T T T T T T T

T

`+1;0 )+

r+1

X

j=0



L

`+1;j (0)T

T T T T T T T

T

`+1;j

;

G G G G G G G G

G

`

1

= r

X

j=0



!

` (1)

_

!

` (t

`;j )(t

`;j 1)

(T T T T T T T T

T

`;j T T T T T T TT

T

`;r+1 )+

r+1

X

j=0



L

`;j (1)T

T T T T T T T

T

`;j

;

and

H H HHHHHHH

`

= r

X

j=0

1

_

!

` (t

`;j )(t

`;j 1)

(TTTTTTTTT

`;j T T TTTTTTT

`;r+1 )

r+1

X

j=1 1

_

!

` (t

`;j )t

`;j (TTTTTTTTT

`;j T T T T T T T TT

`;0 );

thenrelation (1.6)leadsby of (2.4),(2.5) to thefollowingsystemof nonlinear

equations

F F F F F F F F

F

1 :=

1

_

!

1 (1)

( 2

1 G G G G G G G G

G 1

1 G G G G G G GG

G 1

0 )+H

H HHHHHH

H

1

0

_

!

1 (0)

d d d d dddd

d

0

=0 0 0 0 0000

0;

F F F F F F F F F

` :=

`

_

!

` (1)

( 2

` G G G G G G G G G

`

1 G G G G GGGGG

`

0 )+HHHHHHHHH

`

` 1

` 1

_

!

` (0)

( 2

` 1 G G G G G G G G G

` 1

1 G G G G G G GGG

` 1

0

); `=2;3;:::;m 1;

(2.6)

F F FFFFFFF

m :=

m

_

!

m (1)

d d d d d d d dd

N +HHHHHHHHH

m

m 1

m 1

_

!

m (0)

( 2

m 1 G G GGGGGGG

m 1

1

G G G G G G G G G

m 1

0 ):

Notethattheequationsfortherstandforthelastsegmentaredierentsine

d d d d d d d d d

0 and ddddddddd

N

are given. Thus one has md nonlinear equations for md salar

unknowns

(t

`;j )

m;r

`=1;j=1

; (

` )

m

`=0

; (

` )

m 1

`=1 :

Thebestwaytotaklesuhsystemsofnonlinearequationsturnedouttobethe

homotopyontinuationmethods,aswasreportedin [3℄{[5℄.

3 Asymptoti analysis.

Sine the system of nonlinear equations obtained in the previous setion is

diÆult to analyze in full generality, the asymptoti analysis will be applied

here. Under ertainonditionstheexisteneof theuniqueasymptotisolution

ofthesystem(2.6)willbeproved. Thiswillbedoneinthefollowingway. First,

thesolutionatthelimitpointwillbefound. ThentheregularityoftheJaobian

matrixoftheanalyzedsystemat thelimitpointwillbeproven. Sineitisvery

diÆulttodo itin thegeneralase, theregulardistribution ofthedata points

(i.e. the distribution of the parameter values at whih the underlying urve

maththedata inthearlengthparametrisation isequalforallthesegments)

willbe required,whihassures theJaobianbeingthe Toeplitz-likematrix. It

makesiteasiertoanalyze,sineoneanapplythegeneraltheoryofsystemsof

dierene equations. After that the impliit funtion theorem will be used to

establishtheexisteneofthesolutionin theneighborhoodofthelimitsolution.

(6)

Suppose thatthedata(1.2)and(1.3)arebaseduponasmoothregularpara-

metriurvefffffffff :[0;L℄!R d

,parametrizedbythear lengthparameter. Obvi-

ously, (2.6)involvesdataand unknownsfrom three onseutivesegmentsonly.

Letusreallthefat,observedin[3℄,thateahblokofequationsanbesimpli-

edbysometranslationandrotation. So fffffffff anbe,withoutloosing generality,

loallyparametrizedbythearlengthparametersas

f f fffffff

`

(s); s2[ h

` 1

;h

` +h

`+1

℄;

(3.1)

withh

` :=Æ

`

handbounded globalmeshratio0<Æ

0 Æ

`

1,where

f f f f f f fff

`

(0)=TTTTTTTTT

`;0 :=000000000;

d

ds f f f f fffff

`

(0)=eeeeeeeee

1 :

Hereeeeeeeeee

i

is theunit vetor,i.e.,

e e e e e e e e e

i

(0):=[0;0;:::;0

| {z }

i 1

;1;0;:::;0

| {z }

d i

℄ T

:

Thedomainofthedenition of thear lengthparametersin(3.1)washosen

toassurethat theoriginof theloaloordinatesystemisinTTTTTTTTT

`;0

at s=0,and

srunsoverthethreeneighboringsegmentsoftheunderlying urvefffffffff whihare

involvedin thepartiularset ofequationswhihhastobeanalyzed.

If the

`

i

, i = 1;2;:::;d 1, are the rst d 1 prinipal urvatures of fffffffff

`

,

expandedloallyas

`

i (s)=

`

i;0 +

1

1!

`

i;1 s+

1

2!

`

i;2 s

2

+:::;

andfffffffff

`

isaregularurvein thesense that

d

ds f f f f f f f ff

`

;:::; d

d 1

ds d 1

f f f f f f fff

`

arelinearlyindependentvetorsinR d

,then

`

i;0

onst>0; i=1;2;:::;d 2:

Additionally, we shall assume that

`

d 1;0

onst > 0. With the aid of the

Frenet-Serretformulaeandtheexpansionoftheprinipalurvatures,oneobtains

theloal expansion

f f fffffff

`

(s) = fffffffff

`

(0)+ d

ds f f f f f f f f f

`

(0)s+ 1

2!

d 2

ds 2

f f f f fffff

`

(0)s 2

+

= fffffffff

`

(0)+(s 1

6 (

`

1;0 )

2

s 3

+)eeeeeeeee

1 (3.2)

+ ( 1

2

`

1;0 s

2

+ 1

6

`

1;1 s

3

+)eeeeeeeee

2 +(

1

6

`

1;0

`

2;0 s

3

+)eeeeeeeee

3 +

(7)

Using(3.1),thedatapointsanbewrittenas

T T T T T T TTT

` 1;j

= fffffffff

`

(h

` 1 (

` 1;j 1));

T T TTTTTTT

`;j

= fffffffff

`

(h

`

`;j );

(3.3)

T T T T TTTTT

`+1;j

= fffffffff

`

(h

` +h

`+1

`+1;j );

where

`;0

:= 0 <

`;1

< <

`;r

<

`;r+1

:= 1, ` = 1;2;:::;m, are given

parametervalues. Theexpansion(3.2)andtheequations(3.3)nallygive

T T TTTTTTT

`;j

=

"

h i

Æ i

`

i

`;j 1

i!

i 1

Y

q=1

`

q;0 +O(h

i+1

)

#

d

i=1 : (3.4)

Applyingtheseexpansionstotheequations(2.6)andmultiplyingthembyD 1

` ,

where

D

`

=diag h;

1

2!

h 2

1

Y

q=1

`

q;0

;:::; 1

d!

h d

d 1

Y

q=1

`

q;0

!

;

thenormalizedsystemofnonlinearequationsreads

e

F F FFFFFFF

` :=D

1

` F F F F F F F F F

`

=000000000; `=1;2;:::;m:

(3.5)

Let

e

T T T T T T T T T

` 1;j :=D

1

` T T T T T T TTT

` 1;j

=[Æ i

` 1 (

` 1;j 1)

i

℄ d

i=1

+O(h);

e

T T T T T T T T T

`;j :=D

1

` T T T T T T T T T

`;j

=[Æ i

`

i

`;j

℄ d

i=1

+O(h);

(3.6)

e

T T T T T T T T T

`+1;j :=D

1

` T T T T T T T TT

`+1;j

=[(Æ

` +Æ

`+1

`+1;j )

i

℄ d

i=1

+O(h);

and

e

0 :=

0

h

; e

m :=

m

h :

Thelimitsolutionofthenormalizedsystemisgivenbythefollowinglemma.

Lemma 3.1. As h!0,the solutionof the system(3.5)is

e

0

= Æ

1

`

= Æ

`+1

Æ

`

; `=1;2;:::;m 1

e

m

= Æ

m (3.7)

t

`;j

=

`;j

; `=1;2;:::;m; j=1;2;:::;r:

`

=

Æ

`+1

Æ

`



!

`+1 (0)

_

!

`+1 (0)

Æ 2

`+1

Æ 2

`



!

` (1)

_

!

` (1)

1

; `=1;2;:::;m 1;

where

!

` (t)=

r+1

Y

(t t

`;j ):

(8)

Proof. Theproofis rathertehnialandsomedetails willbeomitted. The

limit behaviorof the relation (3.5) as h ! 0 has to be shown. Sine all the

alulationsaresimilar,wewill, e.g.,showhow

lim

h!0 D

1

` G G GGGGGGG

` 1

0

= r+1

X

j=1



!

` (0)

_

!

` (t

`;j )t

`;j lim

h!0 (

e

T T T T T T T T T

`;j e

T T T T TTTTT

`;0 )+

r+1

X

j=0



L

`;j (0)lim

h!0 e

T T TTTTTTT

`;j

; (3.8)

anbesimplied to

2Æ 2

` e e e e e e e e e

2



!

` (0)

_

!

` (0)

Æ

` e e e e eeeee

1 :

Here

L

`;j (t)=

!

` (t)

(t t

`;j )!_

` (t

`;j )

:

Reallthat (3.8)is apart ofthe nonlinearequation e

F F F F F F FF

F

`

=0 0 0 0 0 0 0 0

0 onsidered at the

limitpoint.

Fortherstpartofexpression(3.8),therelation(3.6)andwell-knownproperties

ofthedivideddierenesareused,whihgives

r+1

X

j=1



!

` (0)

_

!

` (t

`;j )t

`;j lim

h!0 (

e

T T T T T T T T T

`;j e

T T T T TTTTT

`;0 )=!

` (0)

r+1

X

j=1 1

_

!

` (t

`;j )

[Æ i

` t

`;j i 1

℄ d

i=1

= !

` (0)[t

`;0

;t

`;1

;:::;t

`;r+1

℄[Æ i

`

i 1

℄ d

i=1



!

` (0)

_

!

` (0)

[Æ i

` t

`;0 i 1

℄ d

i=1

= !

` (0)Æ

d

` e e e e e e e e e

d



!

` (0)

_

!

` (0)

Æ

` e e e e e e e ee

1 :

Fortheseondpartreallalsotheidentities

t q

= r+1

X

j=0 t

`;j q

L

`;j

(t); q=0;1;:::;r+1;

and

t r+2

=!

` (t)+

r+1

X

j=0 t

`;j r+2

L

`;j (t);

whihareapplied toobtain

r+1

X

j=0



e

L

`;j (0) lim

h!0 e

T T T T T T T T

T

`;j

=2Æ 2

` e e e e e e e e

e

2 Æ

d

`



!

` (0)e

e e e e e e e

e

d :

Similarlytheothertermsof (3.5)arehandled and itiseasy toshowthat they

sumto zerowhihompletestheproofofthelemma.

It remains to prove the regularity of the Jaobian of the nonlinear system

(3.5)atthelimitsolution. Tosimplifythealulationofthepartialderivatives,

(9)

itis moreonvenientto reverse the roleof the unknownsand the parameters,

as in [9℄. The impliit funtion theorem an then be applied at the end to

ompletetheproof. Soletusassumeforawhilethatttttttttt

`

=(t

`;j )

m;r

`=1;j=1

aregiven

parameters,and

`

=(

`;j )

m;r

`=1;j=1

are theunknowns. Expliit omputationof

theJaobianrequiresapartiularorderingoftheunknowns. Thefollowingone

willbeonsidered:

e

0

;

1

;

1

;

1

;

2

;

2 :::;

m 1

;

m 1

;

m

;e

m :

This ordering and the fat that there are only three neighboring segments in-

volvedinthepartiularsetofequationsofthenonlinearsystem(3.5),implythat

theJaobianisabloktridiagonalmatrix. Butthestudyofitsregularityisstill

verydiÆult,andsomefurtherassumptionsareneeded. Suppose thatthedata

pointsareregularly sampled. Itmeans thatthelengthsof thesegmentsof the

urvefffffffff are allequal,i.e, Æ

`

=1forall `, andthe omponentsof thevetorttttttttt

`

(whihareparametersnow)areequallydistributedoneahsegment,i.e.,

t

j :=t

`;j

; `=1;2;:::;m; j=0;1;:::;r+1:

Thelimitsolutionfromlemma3.1thenbeomes

e

0

=

`

=e

m

=1; `=1;2;:::;m 1;

`;j

= t

j

; `=1;2;:::;m; j=1;2;:::;r;

(3.9)

`

=

=



!(0)

_

!(0)



!(1)

_

!(1)

1

; !(t)= r+1

Y

j=0 (t t

j );

and the Jaobian, say J

m

, is a blok tridiagonal Toeplitz-like matrix. This

propertywill beusedto provetheregularityofJ

m

atleast formlargeenough

whihwill implythetheorem1.1 statedin theintrodution.

Whatfollowsnowisthetehnialpartoftheproofofthetheorem.

Firstthe JaobianJ

m

of thesystem at the limitpointwill be derived. If the

notationa:=!(1)=_ !(0),_ b:=!(1)= !(1),_ :=2

,andu

j

=t

j

=(t

j

1)isused,

theolumnsofJ

m

arisingfromthe`-thsegment(1<`<m)ofthenormalized

system(3.5)andomputedatthelimit(3.9),are

` 1;j e

F F F F FFFF

F

`

=

a

(t

j 1)

2

_

!(t

j )

[i(t

j 1)

i 1

℄ d

i=1

;

` 1 e

F F F F FFFF

F

`

=

2

_

!(0)

[1;0;:::;0℄

T

;

` 1 e

F F F F FFFFF

`

= 1

_

!(0)

[1 b;2;0;:::;0℄

T

;

`;j e

F F F F FFFFF

`

=

1 (u

j +1=u

j )

t

j (t

j

1)!(t_

j )

[it i 1

j

℄ d

i=1

;

e

F F F F FFFFF

`

= 2

!(1)_ [i℄

d

i=1

;

(10)

` e

F F F F FFFFF

`

=

_

!(1)

[i(i 1 b)℄ d

i=1

;

`+1;j e

F F F F FFFFF

`

=

at 2

j _

!(t

j )

[i(t

j +1)

i 1

℄ d

i=1 :

Otherunknownsarenotinvolvedin theequationsforthe`-thsegmentandthe

orresponding partial derivatives are zero. Similarly the olumns of the rst

andthelastdiagonalbloksarederived. Multipliationoftheobtainedmatrix

byL=diag(L

1

;L

2

;:::;L

m

),where L

i

=diag (1;1=2;:::;1=d),i =1;2;:::;m,

fromtheleft,andbyR=diag (R

1

;R

2

;:::;R

m ),

R

1

= diag ( !(0);_ vvvvvvvvv T

;!(1)_ =2);

R

j

= diag ( !(0)=;_ v v v v v v v v

v T

;!(1)_ =2); j=2;3;:::;m 1;

R

m

= diag ( !(0)=;_ vvvvvvvvv T

;!(1));_

wherevvvvvvvvv=[t

j (t

j

1)!(t_

j )=℄

r

j=1

,fromtheright,produesthematriesA

1 ,A,

B,C andA

2 ,

A

1

= 2

6

6

6

4

1 (1= u

1 )t

0

1

(1= u

r )t

0

r 1

0 (1= u

1 )t

1

1

(1= u

r )t

1

r 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 (1= u

1 )t

d 1

1

(1= u

r )t

d 1

r 1

3

7

7

7

5

;

A= 2

6

6

6

6

6

4

1= b a

11 a

12

a

1r 1

1 a

21 a

22

a

2r 1

0 a

31 a

32

a

3r 1

.

.

. .

.

. .

.

.

0 a

d1 a

d2

a

dr 1

3

7

7

7

7

7

5

;

wherea

k j

:=(1= u

j 1=u

j )t

k 1

j ,

B= 2

6

6

6

4

b=a (t

1 +1)

0

=(au

1

) (t

r +1)

0

=(au

r ) 0

(1 b)=a (t

1 +1)

1

=(au

1

) (t

r +1)

1

=(au

r ) 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(d 1 b)=a (t

1 +1)

d 1

=(au

1

) (t

r +1)

d 1

=(au

r ) 0

3

7

7

7

5

;

C= 2

6

6

6

4

0 au

1 (t

1 1)

0

au

r (t

r 1)

0

a

0 au

1 (t

1 1)

1

au

r (t

r 1)

1

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 au

1 (t

1 1)

d 1

au

r (t

r 1)

d 1

0 3

7

7

7

5

;

and

A

2

= 2

6

6

6

6

6

4

(1= b) (1= 1=u

1 )t

0

1

(1= 1=u

r )t

0

r 1

1 (1= 1=u

1 )t

1

1

(1= 1=u

r )t

1

r 1

0 (1= 1=u

1 )t

2

1

(1= 1=u

r )t

2

r 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 (1= 1=u

1 )t

d 1

(1= 1=u

r )t

d 1

1 3

7

7

7

7

7

5 :

(11)

Notethatallthesematriesarequadratisined=r+2.

ThetransformedJaobian,say e

J

m

, nowbeomes

e

J

m :=LJ

m R=

2

6

6

6

6

6

6

6

6

6

6

6

6

4 A

1

B 0 0 0

C A B 0 0

0 C A

.

.

. .

.

.

0

0 0

.

.

. .

.

. .

.

. .

.

. .

.

.

.

.

. .

.

. .

.

. .

.

.

A B 0

.

.

. .

.

. .

.

. .

.

.

C A B

0 0 0 0 C A

2 3

7

7

7

7

7

7

7

7

7

7

7

7

5 : (3.10)

Observethattherstandthelastdiagonalbloksaredierentfromtheothers,

sinethetangentdiretionsattheboundaryaregiven. Thisiswhytheobtained

matrixisblokToeplitz-likeandnotexatlyblokToeplitz.

Matries L and R are obviously invertible. Consequently, J

m

is invertible if

e

J

m

=LJ

m

Ris. Itwillbeshownthat e

J

m

isinvertibleformlargeenough. The

fatthatthematrixisblokToeplitz-likewillbeused. Inthisasetheproblemof

thenon-singularityof thematrix isloselyonneted withapartiular system

of dierene equations. The solutions of this system depend mainly on the

strutureofthepolynomial

()=det(C+A+ 2

B); 2C;

andthefollowinglemmawillbeprovedrst.

Lemma 3.2. The determinant isexpliitly

()=detV(0;t

1

;:::;t

r

;1)

2 ()

r+1

;

where

2 ()=

1

a

2

+

1

2

+a;

andV(0;t

1

;:::;t

r

;1)isthe Vandermonde matrix.

Proof. Let

P := (C+A+ 2

B)diag(1;t

1 (t

1

1);:::;t

r (t

r

1);1)

= 2

6

6

6

6

6

4

(1= b)+ 2

b=a p

11

p

1r

a

2

(1 b)=a p

21

p

2r

2

(2 b)=a p

31

p

3r

.

.

.

.

.

. .

.

. .

.

. .

.

.

2

(d 1 b)=a p

d1

p

dr

3

7

7

7

7

7

5

;

where

p

k j

:= at 2

j (t

j 1)

k 1

+(t

j (t

j

1)= t 2

j (t

j 1)

2

)t k 1

j +

+

2

(t 1) 2

(t +1) k 1

=a:

(12)

Theapproahbasedupon[8℄willbeusednow. Bythedenitionofthedetermi-

nant,detP isapolynomialinvariablest

1

;t

2

;:::;t

r

. Abrieflook attheentries

ofthematrixP revealsthatthetotaldegreeofitsdeterminantisat most

d

X

k =3

(k+1)= r

2

+7r

2 : (3.11)

So,ifallthezerosareguessed,onehastondtheleadingoeÆientonly. Note

that

(p

k j )

d

k =1

t

j

=0

=

a

( a;;:::;) T

;

(p

k j )

d

k =1

t

j

=1

= ( a;;:::;) T

are both proportional to the last olumn of P. Also, only one olumn of P

dependsonxedt

j ,and

t

j (p

k j )

d

k =1

t

j

=0

=

2

a h

2 a

a

2;

a

1;0;1;2;:::;d 3 i

T

;

t

j (p

k j )

d

k =1

t

j

=1

= [2a;a ; 2; 3;:::;( d+1)℄ T

+

1

2

[1;1;:::;1℄

T

;

andagaintherst,the(j+1)-th ,andthelastolumnarelinearlydependent.

Thus detP vanishes twofold at t

j

= 0;1. Sine it vanishes also for t

j

= t

j 0

,

j6=j 0

,

detP =g r

Y

j=1 t

2

j (t

j 1)

2 Y

1j<k r (t

k t

j );

(3.12)

with g possibly depending only on other parameters, but not on t

1

;t

2 :::;t

r ,

sinetherestoftheprodutisalreadyoftotaldegree

4r+

r

2

= r

2

+7r

2

;

whihequals(3.11). Evenmore,gmustequal(forexample)theoeÆientofthe

termt 4

1 t

5

2 t

d+1

r

in detP. Sinethis termis involvedin theonsidered deter-

minantonly twie, namely in p

10 p

2;r+1 Q

r+2

j=3 p

j;j 2 andp

20 p

1;r+1 Q

r+2

j=3 p

j;j 2 ,

aneasyomputationgivesthedesiredoeÆient

g=f( 1) r

((1= b)+ 2

b=a)+( 1) r+1

(

2

(1 b)=a)( a)g

r+2

Y

( 2

=a+(1= 2)+a)=( 1) r

( 2

=a+(1= 2)+a) r+1

:

(13)

Theresultofthelemmafollowsafter(3.12)is dividedby Q

r

j=1 t

j (t

j 1).

Sine the roots of will be of partiular interest, the following observation

willbeuseful.

Lemma 3.3. There existonly three distint real roots of ,namely

0

=0,

1 and

2

. Moreover,

1

;

2

6=aandoneoftheroots,say

2

,isdominant,i.e.,

j

1 j<j

2 j.

Proof. Bylemma3.2, therootsof onsists of

0

=0and therootsof

2 .

Sine

2

isquadratipolynomialand(1= 2) 2

4>0(beause<0),

1 and

2

are realand distint. Therelation

1

2

=a 2

>0then impliesthat

1 and

2

havethesamesignandnoneofthemequals a. Consequentlyj

1 j6=j

2 j.

Thesefats willbeusedto provethefollowingtheorem.

Theorem 3.4. If m islargeenough,thenthe matrixJ

m

isnonsingular.

Proof. Itisby(3.10)enoughtoshowthat e

J

m

isnonsingularifmissuÆiently

large. Supposethat thereisxxxxxxxxx2R d

and e

J

m x x x x x x

xxx=000000000. Itwillbeshownthat xxxxxxxxx=000000000

ifmis largeenough. Letusrewritetheequation e

J

m x x x x x x x

xx=000000000intheblokform

e

J

m 2

6

6

6

6

6

4 x x x x x x xx

x

m1

x x xxxxxx

x

m1+1

.

.

.

x x x x x x x x x

m

2

x x x x x x xxx

m

2 +1

3

7

7

7

7

7

5

=0 0 0 0 0 0 0 0

0; x x xxxxxx

x

` 2R

d

; `= m

1

; m

1

+1;:::;m

2 +1;

(3.13)

wherem

1 +m

2

=m 2andm>2. Sine e

J

m

isgivenby(3.10),equation(3.13)

isequivalenttothefollowingsystemofdiereneequations

A

1 x x x x x x x x

x

m1 +Bx

x x x x x x x

x

m1+1

= 0 0 0 0 0 0 00

0

Cxxxxxxxxx

` 1 +Axxxxxxxxx

` +Bxxxxxxxxx

`+1

= 000000000; `= m

1

+1;:::;m

2 (3.14)

Cx x x x x x x x

x

m2 +A

2 x x x x x x xx

x

m2+1

= 0 0 0 0 0 0 00

0:

Inorder to apply the generaltheory of dierene equations ([6℄, p. 181{227),

thesystem(3.14)willbersttransformedtothesystemofdiereneequations

oftherstorder. Let

y y y y yyyyy

`

=

x x x x xxxxx

`

x x x x x x x x x

`+1

; `= m

1

; m

1

+1;:::;m

2 :

Now(3.14)isequivalentto

Myyyyyyyyy

`+1

=Nyyyyyyyyy

`

; `= m

1

; m

1

+1;:::;m

2 1;

(3.15)

where

M=

I 0

0 B

and N =

0 I

C A

;

withI theidentityin R dd

,andtheboundaryonditions

[A

1 B℄yyyyyyyyy

m

1

=000000000;

(3.16)

[C A

2

℄yyyyyyyyy

m

=000000000:

(3.17)

(14)

Lemma 3.5. Let():=det(N M). Then has threereal roots,

0

=0,

1 and

2

of multipliity1,r+1andr+1respetively. Thegeneral solutionof

(3.15) is

y y yyyyyyy

m1

= PJ m1

+

0 e e e e eeeee

1

;

y y y y y y yy

y

`

= PJ

`

; `= m

1

+1; m

1

+2;:::;m

2 1;

y y y y y y y y y

m2

= PJ m2

+

1 e e e e e e e ee

2d

;

whereP =[P

1 P

2

℄isthe matrixofgeneralizedeigenvetorsandprinipalvetors

of the matrix penil N M orresponding to

1 and

2

,J =diag(J

1

;J

2 ) is

the orresponding blok Jordan matrix and [

0

; T

;

1

℄ T

2 R 2d

is a vetor of

arbitraryonstants.

Proof. Itiseasytoverifythat

det(N M)=det (C+A+ 2

B)=():

Bylemma3.2, hasthree roots,

0

=0,

1 and

2

ofmultipliity1,r+1and

r+1respetively. Sine thedegreeof is2r+3=2d 1<2d, ithasexatly

onerootatinnity, say

1 .

Tondageneralsolutionof(3.15),onehastoonstruttheanonialformsof

N

i

M,i=0;1;2and

0

N M. Itisthenwellknown([6℄,p. 225{227)that

thegeneralsolutionof (3.15)is

y y y y y y y y y

m

1

= PJ m1

+

0 z z zzzzzzz;

y y y y yyyyy

`

= PJ

`

; `= m

1

+1; m

1

+2;:::;m

2 1;

y y y y y y y y y

m

2

= PJ m2

+

1 w w w w w w www;

whereP =[P

1 P

2

℄isthematrixofgeneralizedeigenvetorsandprinipalvetors

orrespondingto

1 and

2

,J =diag(J

1

;J

2

)istheorrespondingblokJordan

matrix,[

0

; T

;

1

℄ T

2R 2d

is avetorofarbitraryonstants,zzzzzzzzz is ageneralized

eigenvetororrespondingto

0 ,andw

w w w wwww

wisageneralizedeigenvetororrespond-

ingto

1

. SineNz z z z z z z z

z=Mw w w w w w w w

w=0 0 000000

0and therstolumnofC andthelastolumn

ofBarezero,wehavez z z z zzzz

z2Linfe e e e e e e e

e

1 g,w

w wwwwww

w2Linfe e eeeeee

e

2d

g. Consequently,wemyassume

thatzzzzzzzzz=eeeeeeeee

1

andwwwwwwwww=eeeeeeeee

2d .

Sineit isalso knownthat thematrix e

P =[zzzzzzzzzPwwwwwwwww℄ isnonsingular, thesolution

spaeof(3.15)hasdimension2dandtherearenoothersolutions.

Theresultof thetheorem 3.4 willfollowifone anprovethat theboundary

onditions (3.16) and (3.17) imply

0

=

1

= 0 and = 000000000 for m

1

and m

2

suÆientlylarge. Namely,ifthisistrue,thenyyyyyyyyy

`

=000000000,`= m

1

; m

1

+1;:::;m

2 ,

whihimpliesxxxxxxxxx

`

=000000000,`= m

1

; m

1

+1;:::;m

2

+1andker e

J

m

=f000000000g.

It is in fat enough to show that = 000000000. Namely, if = 000000000, then the rst

boundaryondition(3.16)beomes

[A

1 B℄yyyyyyyyy

m

1

=

0 [A

1

B℄zzzzzzzzz=

0 [A

1 B℄eeeeeeeee

1

=000000000:

Sine [A

1 B℄eeeeeeeee

1

is the rst olumn of A

1

, whih is nonzero,

0

must be zero.

Similarly,theseondboundaryonditionreadsas

[CA

2

℄yyyyyyyyy

m

=

1 [CA

2

℄wwwwwwwww=

1 [CA

2

℄eeeeeeeee

2d

=000000000:

(15)

Thelast olumnofA

2

islearlynonzero,whihimplies

1

=0.

It remains to prove that is zero. Suppose 6= 000000000. There exists an index i,

1i2d 2,forwhih

i

6=0. Twoaseshavetobeonsidered.

a) Let1id 1. Sinebylemma3.3j

1 j<j

2

j,thedominanteigenvalue

ofJ 1

is1=

1

andthepowermethodassertsthat ifm

1

islargeenough,

1

jjPJ m

1

jj

1 PJ

m

1

= e

u u u u u u u u

u+O(1=m

1 );

where euuuuuuuuu is a generalized eigenvetor orresponding to

1

. Suppose rst

thatj

1

j6=1. Thenormalizedboundaryondition(3.16)implies

[A

1

B℄euuuuuuuuu=000000000:

(3.18)

Weshallshowthatuuuuuuueuumustbezerowhihisanobviousontradition. Sine

e u u u u u u

uuuisageneralizedeigenvetororrespondingto

1

,therelation(N

1 M)euuuuuuuuu

holds,and

(C+

1 A+

2

1 B)uuuuuuuuu

1

=000000000; uuuuuuuuu

2

=

1 u u u u u u u uu

1

; uuueuuuuuu=

u u u u u u u u u

1

u u u u u u u u u

2

: (3.19)

Togetherwith(3.18)onenowonludes

(C+

1 (A A

1 ))u

u u u u u u u

u

1

=0 0 000000

0:

(3.20)

LetusdenethematrixS():=C+(A A

1 ).

Lemma 3.6. The determinantof thematrixS() isexpliitly

detS()=( 1) r

adetV(0;t

1

;t

2

;:::;t

r

;1)( a) r

:

Proof. DeterminantdetS() anbewritten as

det 2

6

6

6

6

6

4

(1= b 1) s

11 s

12

s

1r a

s

21 s

22

s

2r 0

0 s

31 s

32

s

3r 0

.

.

.

.

.

.

.

.

. .

.

. .

.

. .

.

.

0 s

r+2;1 s

r+2;2

s

r+2;r 0

3

7

7

7

7

7

5

;

where

s

k j

=au

j (t

j 1)

k 1

1

u

j t

k 1

j :

Usingsomebasipropertiesofdeterminants,itsimpliesto

detS()=( 1) r

adet [s

k j

℄ r+2;r

k =3;j=1 :

Theremainingdeterminantanbeeasilyomputedbyfollowingtheideas

oftheproofoflemma3.2.

(16)

Bylemma 3.3,

1

6=0;a and thedeterminant ofS(

1

)must be nonzero.

Buttherelations(3.20)and(3.19)thenimplyeuuuuuuuuu=000000000whihisaontradi-

tion.

Thesameproofworksin the asewhen j

1

j =1and

1 :=()

d 1

i=1 is not

aneigenvetorofJ 1

1

. Thusitremainstoonsidertheasewhenj

1 j=1

and J 1

1

1

= (1=

1 )

1

. Sine then 0<onst

1

jjPJ k

jj

1

onst

2 ,

forallk,thenormalizedboundaryondition(3.16)beomes

[A

1

B℄euuuuuuuuu+e

0 [A

1

B℄zzzzzzzzz=000000000;

whereuuuuueuuuuisageneralizedeigenvetororrespondingto

1 and

e

0

=

0

=jjPJ m

1

jj

1 :

Thisrelation,(3.19),and thefat that[A

1 B℄z

z zzzzzz

z=e e eeeeee

e

1 imply

(C+

1 (A A

1 ))uuuuuuuuu

1

=

1 e

0 e e e e e e e e e

1 : (3.21)

Thusuuuuuuuuu

1

= (

1

=a)e

0 e e e e e e e e e

d

whihleadseither toeuuuuuuuuu=000000000orontradits(3.20)

andtheproofoftherstaseisomplete.

b) Supposedi2d 2. Thepowermethodnowassuresthat,asm

2 tends

toinnity,

1

jjPJ m

2

jj

1 PJ

m

2

onvergesto ageneralizedeigenvetororrespondingto

2

. The normal-

izedboundaryondition(3.17)beomes

1

jjPJ m

2

jj

1 [C A

2

℄yyyyyyyyy

m2

=[C A

2

℄evvvvvvvvv+e

1 w w w w w w w w

w+O(1=m

2 )=000000000:

Weuseverysimilarargumentsasintherstase. Ifj

2

j6=1,therelation

[C A

2

℄evvvvvvvvv=000000000 (3.22)

musthold. Sinenow(N

2

M)evvvvvvvvv=000000000,wehave

(C+

2 A+

2

2 B)vvvvvvvvv

1

=000000000; vvvvvvvvv

2

=

2 v v v v v v v vv

1

; vvvvvvvvv=

v v vvvvvvv

1

v v vvvvvvv

2

; (3.23)

andtherelation(3.22)imply

(A A

2 +

2 B)v

v v v v v v v

v

1

=0 0 0 0 0 0 0 0

0:

(3.24)

LetT():=A A

2

+B and T

d 1

()denote therstd 1olumnsof

T(). Suppose eeeeeeeeeisavetorofones.

Lemma 3.7. If e

T()=[T

d 1

()eeeeeeeee℄,then

det e

T()=

detV(0;t

1

;t

2

;:::;t

r

;1)

r+1

( a) r

:

(17)

Proof. Theproofofthislemmaisalmostthesameastheproofoflemma

3.2andwillbeomitted.

Observe that the last olumn of T() is zero for all , and reall that

2

6=0;a. Theonlusionthat T(

2

)hasrankd 1nowfollowsdiretly

fromthepreviouslemma. ThusT(

2

)hasonedimensionalkernelspanned

byeeeeeeeee

d

. Theonlysolutionsof(3.24)areinLinfeeeeeeeee

d

g,whihleadstovvvvvvvvv

1

=000000000or

v v v v v v vvv

1

=onsteeeeeeeee

d

. Therstsolutionproduesanobviousontraditionevvvvvvvvv=000000000

andtheseondonefails tosatisfy(3.23).

If j

2

j =1,and

2 :=()

2d 2

i=d

is notaneigenvetorof J

2

, theonlusion

(3.24) is still true. Suppose that j

2

j = 1 and J

2

2

=

2

2

. If (3.17)

is normalizedby jjPJ m

2

jj

1

, whih is bounded now, and the relations

(3.23)and[CA

2

℄w w w w wwww

w=e e e e e e e e

eareused, therelation

(A A

2 +

2 B)vvvvvvvvv

1

= e

1

2 e e e e e e e e e;

(3.25)

wheree

1

=

1

=jjPJ m2

jj

1

,is obtained. Sinebylemma3.7 vetoreeeeeeeeeis

notin theimageofT(

2

),(3.25)hasasolutiononlyife

1

=0,i.e.,(3.24)

mustholdandaontraditionfollowsbypreviousonlusions.

Inall ases

=0 0 000000

0, thus

0 and

1

must be zero too. This implies regularity

of e

J

m form

1 andm

2

largeenough(i.e. m largeenough) and theproof of the

theorem3.4isomplete.

Fortheapproximationorderitisenoughtolooktheerroronthe`-thsegment

independently, i.e., dist (BBBBBBBBB

`

;fffffffff). By (1.6) and (2.5) the tangent diretions of

B B B B B B B B B

`

at the boundarypointsare O(h) approximationsof the tangentdiretions

offffffffff, whih is easily obtainedbystraightforwardomputations. Consequently,

thereexistsasmoothurve e

f f f f

fffff withpositiverstd 1prinipalurvatures,whih

interpolatesthegivendatapointsonthe`-thsegmentandthetangentdiretions

ofBBBBBBBBB

`

attheboundarypoints. Additionally,itanbehoseninsuhawaythat

itinterpolatesfffffffff atadditionaltwopointsonthe`-thsegmenttoo. Then

dist(B B B B BBBB

B

`

;f f f f ffff

f)dist (B B B B B B B B

B

`

; e

f f f f f f f f

f)+dist(

e

f f f f ffff

f;f f ffffff

f)=O(h r+4

)+O(h r+4

);

wheretherstpartfollowsfromthesinglesegmentaseanalysisin[7℄,andthe

seondbytheonstrutionof e

f f f f f f ff

f.

Bytheorem3.4theJaobianofthenonlinearsystem(3.5)isnonsingularatthe

limitsolutionfromlemma3.1. Theimpliitfuntiontheoremnowasserts,that

thesystem(3.5)hasasolutionin theneighborhoodof that limitsolution,i.e.,

for h small enough, or equivalently, m large enough. This nally proves the

resultsstatedinthetheorem1.1.

4 Numerial example.

A numerial example will be given here to onrm the results obtained in

theprevioussetions. Sine theresultsforthe urvesin R 3

havealreadybeen

presentedin[5℄weshallonsidertheurveinR 4

.

(18)

Lettheurvebegivenby

f f

fffffff :[0;10℄!R 4

: 7!fffffffff():=

0

B

B

os

sin

ln (2+)

ln (1+) 1

C

C

A :

It an be veried that the rst three urvatures of fffffffff are positive on [0;10℄

and the urve satises our requirements. The interpolation points have been

hosen on the urve at the equidistantvalues of the parameter . It is not a

regularsamplinginthesenseofthetheorem1.1butwestillgotasolutionofthe

problem. This indiates that theregularityofdata pointsould be omittedin

thetheorem. Thisfathasbeenonrmedbyotherexamplestoo. Thedetailed

numerialalgorithmforsolvingtheobtainednonlinearsystemtogetherwiththe

numerialresultswillappearelsewhere.

2 4 6 8 10

5e - 5 1e - 4 1.5e - 4 2e - 4 2.5e - 4

Figure4.1: Theestimated parametrierrorfortheurvefffffffff andm=6.

Table4.1: Theresultsfortheurvefffffffff.

m Error Rate m Error Rate

6 2:9010 4

16 1:3810 6

5:67

8 6:3210 5

5:30 18 7:0710 7

5:70

10 1:8910 5

5:41 20 3:8710 7

5:71

12 6:9110 6

5:51 22 2:2410 7

5:73

14 2:9210 6

5:58 24 1:3610 7

5:75

Theparametridistane(i.e. theerror)betweenfffffffff andBBBBBBBBBwasobtainedbythe

methoddesribedin [2℄andalreadyusedin[3℄. Theresultsoftheinterpolation

(19)

are shown in Tab. 4.1. The rst olumn is the number of segments of the

spline urve,the seondone theestimatederror, andthe third onetherateof

onvergeneobtainedfromtwoonseutivem. Sineinthisaser=d 2=2,

theapproximationordershouldber+4=6,whihisobviouslyonrmedbythe

resultsinthetable. Fig. 4.1showstheestimatedparametrierrorform=6. It

anbelearlyseenthat fourpointsareinterpolatedoneahsegmentimplying

theerrorbeingzerothere.

REFERENCES

1. C.deBoor,K.Hollig, andM.Sabin,Highauray geometri Hermiteinterpola-

tion,Comput.AidedGeom.Design,4(1987),pp.269{278.

2. W. L. F. Degen, Best approximations of parametri urves by splines, inMath-

ematial Methods in Computer AidedGeometri DesignII, T.Lyhe and L. L.

Shumaker(eds.),AademiPress,1992,pp.171{184.

3. Y. Y. Feng and J.Kozak, On G 2

ontinuous ubi spline interpolation, BIT, 37

(1997),pp.312{332.

4. Y. Y. Feng and J. Kozak, On G 2

ontinuous interpolatory omposite quadrati

Beziere urves,J.Comput.Appl.Math.,72(1996),pp.141{159.

5. Y. Y.FengandJ.Kozak,On splineinterpolation of spae data, inMathematial

Methods forCurvesand SurfaesII,M. Dhlen,T.Lyhe,and L.L. Shumaker

(eds.),VanderbiltUniversityPress, 1998,pp.167{174.

6. I. Gohberg, P.Lanaster, andL. Rodman,Matrix Polynomials,Aademi Press,

1982.

7. J.KozakandE.

Zagar,OnurveinterpolationinR d

,inCurveandSurfaeFitting,

A.Cohen,C.Rabut,andL.L.Shumaker(eds.),VanderbiltUniversityPress,2000,

pp.263{273.

8. C.Krattenthaler,Advaneddeterminantalulus,Sem.Lothar.Combin.,42(1999),

67pp.

9. K.Mrkenand K.Sherer,Ageneralframework forhigh-auray parametri in-

terpolation,Math.Comp.,66(1997),pp.237{260.

10. R. Shabak, Interpolation inR 2

bypieewisequadratis visuallyC 2

Bezier poly-

nomials,Comput.AidedGeom.Design,6(1989),pp.219{233.

Reference

POVEZANI DOKUMENTI

*** The present thematic block originated on the basis of the research on the spare time and culture of the Koper youth, carried out between the autumn of 1998 and the autumn of

Izdajatelja/ Editori/Published by: Zgodovinsko dru{tvo za ju`no Primorsko / Società storica del Litorale© - Znanstveno-raziskovalno sredi{~e Republike Slovenije Koper / Centro

junij: Prodaja vinograda: Gabriel, filius condam Petri Gabrieli de Pirano vendidit Guarnardo, filio Pauli de Mocho, piranskemu me{~anu, vineam unam ponitam in districtu Pirani in

Kazni za tihotapstvo soli iz tujih dr`av kot tudi iz Ogrske in Sedmogra{ke so bile: zaplemba tihotapskega blaga, v denarju je bilo treba pla~ati dvojno vrednost soli (povpre~na

stvo, s katerim je vernik odredil nabožna volila in za- Slovenski posvetni pisci, ki so v istem času vzgajali dušnice, po drugi strani tudi akt, ki je dopuščal

--- Če ti je ostalo še malce matematičnega veselja, reši še to nalogo na ta list in ga prilepi v zvezek, lahko pa tabelo prerišeš tudi v zvezek. Bom vesel, če se lotiš tudi

NEVTRALIZACIJE preverim svoje rešitve. Utrjujem računanje množine snovi, mase snovi. Iz danih navodil izpišem že rešene primere po korakih ter rešim še dodatne primere.

Splošni princip toleriranja ISO 8015 Projekcije ISO 128:. SOLIDWORKS