• Rezultati Niso Bili Najdeni

TRENUTNE OMEJITVE NA PODROČJU UPORABE DPSCs

Čeprav poročajo o ogromno pozitivnih učinkih uporabe DPSCs za namen celične terapije pri različnih boleznih, pa mehanizmi delovanja teh celic še niso povsem razjasnjeni. Ve se, da DPSCs in SHED celice lahko diferencirajo v različne celične tipe, kar je bilo tudi potrjeno v raziskavah. Transplantirane celice lahko migrirajo v tkivo gostitelja in na ta način prispevajo k regeneraciji tkiva. Poročajo tudi o parakrinem delovanju DPSCs, kar so prav tako potrdili s številnimi študijami. Matične celice zobne pulpe torej lahko migrirajo na poškodovane predele in z različnimi molekulami stimulirajo celice tkiva k okrevanju, brez da bi se pri tem diferencirale in integrirale v tarčno tkivo. Terapevtske lastnosti DPSCs so verjetno posledica tako regeneracije tkiva, kot tudi parakrinega delovanje, vendar so za boljše razumevanje mehanizmov delovanja potrebne nadaljnje študije na tem področju.

Zaradi pomanjkanja podatkov o mehanizmih delovanja matičnih celic, se bazične in predklinične raziskave na modelnih živalih odvijajo v bistveno večjem številu kot klinične raziskave na ljudeh. Da bi z gotovostjo lahko potrdili klinično uporabnost DPSCs bo potrebno opraviti dodatne študije na ljudeh. Največji izziv v terapevtiki še vedno predstavlja striktna regulacija in visoki stroški celotnega procesa priprave in aplikacije celic. V vsaki od bazičnih študij uporabljajo nekoliko drugačne pristope za izolacijo, čiščenje, namnožitev in precepljanje matičnih celic. Uporabljajo se tudi različni nosilci in dostavni sistemi za celične terapije, zato bi bilo potrebno za namen varne množične uporabe optimizirati in standardizirati postopke.

Potrebna bo tudi optimizacija na področju priprave visoko kakovostnih celic, določitev optimalnega števila transplantiranih celic in ocena dolgoročne varnosti uporabe. Pri uporabi avtolognih celic problem predstavlja dolgotrajnost procesa priprave ustreznih celic za transplantacijo, kar lahko dodatno poslabša stanje pacienta in zato bi bil potreben razvoj strategij shranjevanja matičnih celic in postopkov presaditve avtolognih matičnih celic.

16 6 ZAKLJUČEK

Poznanih je več vrst matičnih celic, ki jih lahko razdelimo na embrionalne, odrasle matične celice in inducirane pluripotentne matične celice (iPSCs). V praksi se v regenerativni medicini trenutno uporabljajo predvsem mezenhimske matične celice, ki spadajo v skupino odraslih matičnih celic. Inducirane pluripotnentne matične celice se prav tako postopoma uvajajo v klinične poskuse zdravljenja določenih boleznih. Embrionalne matične celice v bazičnih raziskavah sicer kažejo obetavne rezultate, vendar način njihovega pridobivanja odpira resna etična vprašanja, kar omejuje njihovo aplikativno uporabo.

Zaradi odličnih proliferacijskih sposobnosti so DPSCs zanimive za klinično uporabo. Ker se jih lahko pridobi iz tistih stalnih zob, ki bi jih bilo tako ali tako potrebno odstraniti (vraščene osmice, ortodontsko zdravljenje ipd.), ali celo povsem neinvazivno iz mlečnih zob, ko ti izpadejo, se pri njihovem pridobivanju povsem izognemo etičnim pomislekom. Njihov neverjetno širok spekter diferenciacije bi v prihodnosti lahko pripomogel k bistvenemu povečanju kvalitete življenja ljudi s kroničnimi in drugimi degenerativnimi boleznimi, kot so bolezni oči, živčevja, jeter, ustne votline, mišic, imunske bolezni in diabetes. Kljub temu, da je možnost uporabe DPSCs za alogene terapije še izredno slabo raziskana, verjetno tudi zaradi precej okrnjenega poznavanja HLA sistema pri matičnih celicah, verjamem, da bo v prihodnjih letih prišlo do razmaha tudi na tem področju.

Kot sem že omenila se večina raziskav za uporabo DPSCs v regenerativni medicini za zdaj izvaja na živalskih modelih. Odprtih je sicer kar nekaj kliničnih študij, ki kažejo obetavne rezultate, ampak bo potrebnega še veliko dela, da se do potankosti razišče mehanizme terapevtskih učinkov DPSCs, preden se jih prične uporabljati kot rutinski način zdravljenja določenih bolezni. Gotovo pa lahko trdimo, da imajo potencial, da postanejo močno orodje v regenerativni medicini.

17 7 VIRI

Aimetti M., Ferrarotti F., Gamba M. N., Giraudi M., Romano F. 2018. Regenerative treatment of periodontal intrabony defects using autologous dental pulp stem cells: A 1-year follow-up case series. The International Journal of Periodontics and Restorative Dentistry, 38, 1:

51-58

Almushayt A., Narayanan K., Zaki A. E., George A. 2006. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Therapy, 13, 7: 611-620

Apel C., Forlenza O. V., de Paula V. J., Talib L. L., Denecke B., Eduardo C. P., Gattaz W. F 2009. The neuroprotective effect of dental pulp cells in models of Alzheimer's and Parkinson's disease. Journal of Neural Transmission, 116, 1: 71-78

Arana-Chavez E. V., Massa F. L. 2004. Odontoblasts: the cells forming and maintaining dentine. The International Journal of Biochemistry & Cell Biology, 36, 8: 1367-1373 Artene S. A., Ciurea M. E., Purcaru S. O., Tache D. E., Tataranu L. G., Lupu M., Dricu A.

2013. Biobanking in a constantly developing medical world. Scientific World Journal, 23, 343275, doi: 10.1155/2013/343275:6 str.

Bernardi L., Luisi S. B., Fernandes R., Dalberto T. P., Valentim L., Bogo Chies J. A., Medeiros Fossati A. C., Pranke P. 2011. The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. Journal of Endodontics, 37, 7: 973-979 Blaus B. 2014. Medical gallery of Blausen Medical. WikiJournal of Medicine 1, 2, doi:

10.15347/wjm/2014.010

Cavalcanti, B. N., Zeitlin, B. D., Nör, J. E. 2013. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials : Official Publication of the Academy of Dental Materials, 29, 1: 97–102

Chamberlain G., Fox J., Ashton B., Middleton J. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 11: 2739-2749

Collart-Dutilleul P. Y., Chaubron F., De Vos J., Cuisinier F. J. 2015. Allogenic banking of dental pulp stem cells for innovative therapeutics. World Journal of Stem Cells, 7, 7: 1010–

1021

d'Aquino R., De Rosa A., Lanza V., Tirino V., Laino L., Graziano A., Desiderio V., Laino G., Papaccio G. 2009. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. E Cells and Materials, 12, 18: 75-83

Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., Thayer, W. O., Wahl, A., Garcia, J. V., Reichenspurner, H., Davis, M. M., Lanier, L. L., Schrepfer, S. 2019.

Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature Biotechnology, 37, 3: 252–258 Freshney R. 2005. Culture of animal cells. A manual of basic technique. 5th ed. Wiley-Liss,

New York: 696 str.

18

Gandia C., Armiñan A., García-Verdugo J. M., Lledó E., Ruiz A. Miñana M. D., Sanchez-Torrijos J., Payá R., Mirabet V., Carbonell-Uberos F., Llop M., Montero J. A., Sepúlveda P.

2008. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells, 26, 3: 638-645 Gioventù S., Andriolo G., Bonino F., Frasca S., Lazzari L., Montelatici E., Santoro F., Rebulla

P. 2012. A novel method for banking dental pulp stem cells. Transfusion and Apheresis Science, 47, 2: 199-206

Giuliani A., Manescu A., Langer M., Rustichelli F., Desiderio V., Paino F., De Rosa A., Laino L., d'Aquino R., Tirino V., Papaccio G. 2013. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells and Translation Medicine, 2, 4: 316-324

Goldberg M., Hitara A. 2017. The Dental Pulp: Composition properties and function. JSM Dentistry, 5, 1: 1-10

Gomes J. A., Geraldes Monteiro B., Melo G. B., Smith R. L., Cavenaghi Pereira da Silva M., Lizier N. F., Kerkis A., Cerruti H., Kerkis I. 2010. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Investigative Ophthalmology and Visual Science, 51, 3, doi: 10.1167/iovs.09-4029:6 str.

Govindasamy V., Ronald V. S., Abdullah A. N., Nathan K. R., Ab Aziz Z. A., Abdullah M., Musa S., Kasim N. H., Bhonde R. R. 2011. Differentiation of dental pulp stem cells into islet-like aggregates. Journal of Dental Research, 5: 646-652

Guimarães E. T., Cruz Gda S., Almeida T. F., Souza B. S., Kaneto C. M., Vasconcelos J. F., Santos W. L., Santos R. R., Villarreal C. F., Soares M. B. 2013. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model. Cell Transplantation, 22, 12: 2345-2354 Hosseini F. S., Enderami S. E., Hadian A., Abazari M. F., Ardeshirylajimi A., Saburi E., Soleimanifar F., Nazemisalman B. 2019. Efficient osteogenic differentiation of the dental pulp stem cells on β-glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. Journal of Cell Physiology 234, 8: 13951-13958

Huang G. T. 2009. Pulp and dentin tissue engineering and regeneration: current progress.

International Journal of Oral Science, 2, 2: 59-65

Iohara, K., Imabayashi, K., Ishizaka, R., Watanabe, A., Nabekura, J., Ito, M., Matsushita, K., Nakamura, H., Nakashima, M. 2011. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Engineering, 17: 1911–1920

Ishkitiev N., Yaegaki K., Calenic B., Nakahara T., Ishikawa H., Mitiev V., Haapasalo M. 2009.

Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. Journal of Endodontics, 36, 3: 469-474

Kanafi M. M., Rajeshwari Y. B., Gupta S., Dadheech N., Nair P. D., Gupta P. K., Bhonde R.

R. 2013. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy, 15, 10: 1228-1236

19

Harris D. 2016. Long-term frozen storage of stem cells: challenges and solutions. Journal of Biorepository Science for Applied Medicine, 4: 9-20

Kerkis I., Ambrosio C. E., Kerkis A., Martins D. S., Zucconi E., Fonseca S. A., Cabral R. M., Maranduba C. M., Gaiad T. P., Morini A. C., Vieira N. M., Brolio M. P., Sant'Anna O. A., Miglino M. A., Zatz M. 2008. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? Journal of Translational Medicine, 6, 35, doi: 0.1186/1479-5876-6-35: 13 str.

Kerkis I., Kerkis A., Dozortsev D., Stukart-Parsons G. C., Gomes Massironi S. M., Pereira L.

V., Caplan A. I., Cerruti H. F. 2006. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers.

Cells, Tissues, Organs, 184, 3-4: 105-116

Khorsand A., Eslaminejad M.B., Arabsolghar M., Paknejad M., Ghaedi B., Rokn A.R., Moslemi N., Nazarian H., Jahangir S. 2013. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. Journal of Oral Implantology, 39, 4: 433-443

Kim H. J., Cho Y. A., Lee Y. M., Lee S. Y., Bae W. J., Kim E. C. 2016. PIN1 suppresses the hepatic differentiation of pulp stem cells via Wnt3a. Journal of Dental Research, 95, 12:

1415-1424

Kwack K. H., Lee J. M., Park S. H., Lee H. W. 2017. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating t cells to release transforming growth factor beta. Journal of Endodontics, 4, 1: 100-108

Li Z., Jiang C. M., An S., Cheng Q., Huang Y. F., Wang Y. T., Gou Y. C., Xiao L., Yu W. J., Wang J. 2014. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Diseases, 20, 1: 25-34

Lin S., Chang W., Lin C., Hsieh S., Lee S., Fan K., Lin C., Huang H. 2014. Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation.

Electromagnetic Biology and Medicine, 34, 4: 302-308

Liu H., Gronthos S., Shi S. 2006. Dental pulp stem cells. Methods in enzymology. 419:99-113 Lopez-Cazaux S., Bluteau G., Magne D., Lieubeau B., Guicheux J., Alliot-Licht B. 2006. Culture medium modulates the behaviour of human dental pulp-derived cells: technical note. European Cells and Materials Journal, 17, 11: 35-42

Mead B., Hill L. J., Blanch R. J., Ward K., Logan A., Berry M., Leadbeater W., Scheven B. A.

2016. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy, 18, 4: 487-496

Miller W. A., Everett M. M., Freedman J. T., Feagans W. C., Cramer J. F. 1976. Enzyme separation techniques for the study of growth of cells from layers of bovine dental pulp. In Vitro, 12, 8: 580-588

Miura M., Gronthos S., Zhao M., Lu B., Fisher L. W., Robey P. G., Shi S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100, 10: 5807–5812

20

Musiał-Wysocka A., Kot M., Majka, M. 2019. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 28, 7: 801–812

Nagpal A., Kremer K. L., Hamilton-Bruce M. A., Kaidonis X., Milton A. G., Levi C., Shi S., Carey L., Hillier S., Rose M., Zacest A., Takhar P., Koblar S. A. 2016. TOOTH (The open study of dental pulp stem cell therapy in humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke. The International Journal of Stroke, 11, 5: 575-585

Nakamura S., Yamada Y., Katagiri W., Sugito T., Ito K., Ueda M. 2009. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics, 35, 11:

1536-1542

Nakashima M. 1991. Establishment of primary cultures of pulp cells from bovine permanent incisors. Archives of Oral Biology, 36, 9: 655-663

Nakashima M., Iohara K. 2017. Recent progress in translation from bench to a pilot clinical study on total pulp regeneration. Journal of Endodontics, 43, 9: 82-86

Nakashima, M., Iohara, K., Murakami, M., Nakamura, H., Sato, Y., Ariji, Y., Matsushita, K.

2017. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Research and Therapy, 8, 1, doi: 10.1186/s13287-017-0506-5: 13 str.

Nanci A. 2008. Ten Cate’s oral histology: development, structure and function. 7th ed. St. Louis, Mosby Elsevier: 432 str.

Nesti C., Pardini C., Barachini S., D'Alessandro D., Siciliano G., Murri L., Petrini M., Vaglini F. 2011. Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+

or rotenone. Brain Research, 1367: 94-102

Nicola F. D. C., Marques M. R., Odorcyk F., Arcego D. M., Petenuzzo L.., Aristimunha D., Vizuete A., Sanches E. F., Pereira D. P., Maurmann N., Dalmaz C., Pranke P., Netto C. A.

2017. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Research, 1663: 95-105

Okiji T. 2002. Pulp as a connective tissue. In: Hargreaves K, Goodis H (eds) Seltzer and Bender’s dental pulp. Chicago, Quintessence Books: 120 str.

Oktar P. A., Yildirim S., Balci D., Can A. 2011. Continual expression throughout the cell cycle and downregulation upon adipogenic differentiation makes nucleostemin a vital human MSC proliferation marker. Stem Cell Reviews and Reports. 7, 2: 413-424

Osathanon T. 2010. Transplantation of cryopreserved teeth: a systematic review. International Journal of Oral Science, 2, 2: 59–65

Perry B. C., Zhou D., Wu X., Yang F. C., Byers M. A., Chu T. M., Hockema J. J., Woods E.

J., Goebel W. S.. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Engineering, Part C Methods, 14, 2: 149-156

21

Pierdomenico L., Bonsi L., Calvitti M., Rondelli D., Arpinati M., Chirumbolo G., Becchetti E., Marchionni C., Alviano F., Fossati V., Staffolani N., Franchina M., Grossi A., Bagnara G.

P. 2005. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, 80, 6, :836-844

Pisciotta A., Riccio M., Carnevale G., Lu A., De Biasi S., Gibellini L., La Sala G. B., Bruzzesi G., Ferrari A., Huard J., De Pol A. 2015. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Research and Therapy, 6, 1, 10.1186/s13287-015-0141-y: 15 str.

Potdar P. D., Jethmalani Y. D. 2015. Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells, 7, 5: 839–851

Riegman P. H., Morente M. M., Betsou F., de Blasio P., Geary P. 2008. Marble arch international working group on biobanking for biomedical research. biobanking for better healthcare. Molecular Oncology, 2, 3: 213-222

Rosa, V., Zhang, Z., Grande, R. H., Nör, J. E. 2013. Dental pulp tissue engineering in full-length human root canals. Journal of Dental Research, 92, 11: 970–975

Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., Sakamoto, K., Tauchi, R., Wakao, N., Imagama, S., Hibi, H., Kadomatsu, K., Ishiguro, N., Ueda, M.

2012. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. The Journal of Clinical Investigation, 122, 1, doi: 10.1172/JCI59251: 12 str.

Suzuki ., Haruyama N., Nishimura F., Kulkarni A. B. 2012. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues.

Archives of Oral Biology, 57, 9: 1165-1175

Syed-Picard, F. N., Du, Y., Lathrop, K. L., Mann, M. M., Funderburgh, M. L., Funderburgh, J.

L. 2015. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Translational Medicine, 4, 3: 276–285

Taghipour Z., Karbalaie K., Kiani A., Niapour A., Bahramian H., Nasr-Esfahani M. H., Baharvand H. 2011. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells and Development, 21, 10: 1794-802

Tatullo M., Marrelli M., Shakesheff K. M., White, L. J. 2015. Dental pulp stem cells: function, isolation and applications in regenerative medicine. Journal of tissue engineering and regenerative medicine, 9: 1205– 1216

Tsutsui T. W. 2020. Dental Pulp Stem Cells: Advances to Applications. Stem cells and cloning:

advances and applications, 13: 33–42

Wang F., Jia Y., Liu J., Zhai J., Cao N., Yue W., He H., Pei X. 2017. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

Cell Biology International, 41, 6: 639-650

Wang J., Wang X., Sun Z., Wang X., Yang H., Shi S., Wang S. 2010. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells and Development, 19, 9: 1375-83

22

Woods E. J., Perry B. C., Hockema J. J., Larson L., Zhou D., Goebel W. S. 2009. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology, 59, 2: 150–157

Xuan K., Li B., Guo H., Sun W., Kou X., He X., Zhang Y., Sun J., Liu A., Liao L., Liu S., Liu W., Hu C., Shi S., Jin Y. 2018. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Science Translational Medicine, 10, 455, doi:

10.1126/scitranslmed.aaf3227: 14 str.

Yamada, Y., Nakamura, S., Ito, K., Sugito, T., Yoshimi, R., Nagasaka, T., Ueda, M. 2010. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Engineering, 16: 1891–1900

Yamaguchi S., Shibata R., Yamamoto N., Nishikawa M., Hibi H., Tanigawa T., Ueda M., Murohara T., Yamamoto A. 2015. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Scientific Reports, 5, 16295, doi:

10.1038/srep16295: 10 str.

Yamaza T., Alatas F. S., Yuniartha R., Yamaza H., Fujiyoshi J. K., Yanagi Y., Yoshimaru K., Hayashida M., Matsuura T., Aijima R., Ihara K., Ohga S., Shi S., Nonaka K., Taguchi T.

2015. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Research and Therary, 6, 1, doi: 10.1186/s13287-015-0154-6: 16 str.

Yamaza, T., Kentaro, A., Chen, C., Liu, Y., Shi, Y., Gronthos, S., Wang, S., Shi, S. 2010.

Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Research and Therapy, 1, 1, doi: 10.1186/scrt5: 11 str.

Yan M., Yu Y., Zhang G., Tang C., Yu J. 2011. A journey from dental pulp stem cells to a bio-tooth. Stem Cell Reviews and Reports, 7, 1: 161-171

Yu C., Abbott P.V. 2007. An overview of the dental pulp: its functions and responses to injury.

Australian Dental Journal Supplement, 52, 1: 4-16

Yildirim S. 2013. Dental Pulp Stem Cells. 3rd ed. SpringerBriefs in stem cells. New York, Springer New York: 147 str.

Zhou D., Gan L.,Peng Y.,Zhou Y.,Zhou X.,Wan M., Fan Y., Xu X., Zhou X., Zheng L., Du W. 2020. Epigenetic regulation of dental pulp stem cell fate. Steam Cells International, doi:

10.1155/2020/8876265: 16 str.

Zimmermann A., Preynat-Seauve O., Tiercy J. M., Krause K. H., Villard J. 2012. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations.

Stem Cells and Development, 21, 13: 2364-2373

ZAHVALA

Za nasvete, pomoč in vodenje pri pisanju diplomskega dela se iskreno zahvaljujem mentorju Jerneju Ogorevcu ter somentorju Marku Strbadu. Posebej bi se zahvalila staršem in fantu za vso izkazano podporo in prijateljem, ki mi vedno stojijo ob strani.