• Rezultati Niso Bili Najdeni

Tveganja, ki jih prinaša vpeljava nove mikro RNA tehnologije, zajemajo vse od zavračanja gensko spremenjenih organizmov do negativnega vpliva na okolje. Prav tako lahko mikro RNA vpliva na sestavo človeške črevesne mikrobiote. Tveganja z mikro RNA genskim modificiranjem lahko predstavljajo izven-tarčni učinki na druge gene gostitelja, na mikroorganizme, transgena introgresija in tveganje povezano z varnostjo hrane. S tehnologijo, ki uporablja male RNA, se lahko pojavi problem nenamernih sekundarnih učinkov, še posebej ob uporabi tehnologije za ustvarjanje širokega spektra odpornosti na patogene (Ramesh, 2013).

Prav tako obstaja možnost, da transgena rastlina z rezistenco na virus sproži horizontalni genski prenos v druge mikroorganizme v zemlji (Fuchs in Gonsalves, 2007). Rastline same po sebi

14

vsebujejo mikro RNA, v katerih se pojavlja tudi sekvenčna homologija s človeškimi geni, kar nam ne povzroča težav. Sklepamo, da prisotnost amiRNA ne vpliva na varnost prehranjevanja z gensko spremenjenimi organizmi (Ramesh, 2013). Do zdaj ni znano ali tehnologija prekomernega izražanja določene mikro RNA lahko povzroča težave za uporabo rastline v prehrani.

6 ZAKLJUČEK

Različni patogeni nenehno ogrožajo svetovno pridelavo rastlinskih pridelkov. Nova dognanja na področju raziskav v rastlinski biologiji so razkrila novo strategijo v boju proti patogenom z uporabo mikro RNA tehnologij, ki se odzovejo na napad patogenov. Z razvojem novih strategij in njihovo vpeljavo v proizvodnjo lahko bolj obvladujemo širjenje bolezni in vplivamo na kakovost pridelka.

Mikro RNA se lahko uporabi kot biomarker odpornosti na določene bolezni. Rastlinska odpornost, ki temelji na mikro RNA, je ključnega pomena za rastlinsko imunost. Trenutno razumevanje področja je dobra podlaga za razvoj molekularnih orodij za povečanje kmetijske proizvodnje. Potrebnih bo še precej poglobljenih raziskav o biokemičnih encimih in mikro RNA posredovanem mehanizmu (Islam in sod., 2018).

Zaradi univerzalnosti, stabilnosti in sposobnosti ohranjanja ima mikro RNA tehnologija ogromen potencial v agrokulturi, gozdarstvu in okoljski remediaciji. Kljub trenutni zadostni varnosti globalne prehrane obstajajo tveganja, da v prihodnosti proizvodnja ne bo zadostila naraščajočim potrebam (Christou in Twyman, 2004).

Veliki problemi se pojavljajo predvsem v revnejših državah in v državah v razvoju, ki nimajo vzpostavljene zanesljive pridelave hrane. Vse strategije za reševanje tega prehranjevalnega problema morajo vsebovati zvišan dohodek pridelovalcev preko zvišanja produktivnosti kmetijskih rastlin (Christou in Twyman, 2004). Tehnologija na osnovi mikro RNA ni le nov vir kandidatov transgenih organizmov, temveč je lahko navdih za razvoj novih tehnologij, kot je amiRNA. Študije interakcij na nivoju mikro RNA nam odkrijejo vpogled v mehanizme posttranskripcijske genske regulacije in rastlinske molekularne poti odzivov na stres (Zhou in Luo, 2013). Mikro RNA ima potencial postati novo biotehnološko orodje. Ovira so stranski učinki, kot so npr. pleiotropske spremembe rastlinske morfologije in razvoja. Pomembno je, da detektiramo vse povezane mehanizme, da lahko razvijemo pravilno transgeno strategijo, s katero dosežemo želeno lastnost (Li in sod., 2008).

15 7 VIRI

Agrios G. 1978. Plant pathology. 5th ed. Cambridge, Elsevier: 952 str.

Arnold N., Koppula P. R., Gul R., Luck C., Pulakat L. 2014. Regulation of cardiac expression of the diabetic marker MicroRNA miR-29. PloS One, 9, 7: e103284, doi:

10.1371/journal.pone.0103284: 11 str.

Bautman O., Yilmaz S., Roberts P., McAvoy E., Hutton S., Dey K., Adkins S. 2020. Tomato brown rugose fruit virus (ToBRFV): A potential threat for tomato production in Florida.

Plant Pathology.

https://edis.ifas.ufl.edu/publication/PP360 (25. avg. 2021)

Bordenstein S. R., Theis K. R. 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biology, 13, 8: e1002226, doi:

10.1371/journal.pbio.1002226: 23 str.

Broderick J. A., Zamore P. D. 2011. MicroRNA therapeutics. Gene Therapy, 18, 12: 1104-1110

Thomma B. P., Nurnberger T., Joosten M. H. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 23, 1: 4-15

Catalanotto C., Cogoni C., Zardo G. 2016. MicroRNA in control of gene expression: an overview of nuclear functions. International Journal of Molecular Sciences, 17, 10: 1712, doi: 10.3390/ijms17101712: 17 str.

Christou P., Twyman R. M. 2004. The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews, 17, 1: 23-42

Choi J. W., Um J. H., Cho J. H., Lee H. J. 2017. Tiny RNAs and their voyage via extracellular vesicles: secretion of bacterial small RNA and eukaryotic microRNA.

Experimental Biology and Medicine, 242, 15: 1475-1481

Diener T. O. 2003. Discovering viroids - a personal perspective. Nature Reviews Microbiology, 1, 1: 75-80

Fuchs M., Gonsalves D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annual Review of Phytopathology, 45: 173-202

Gaafar Y. Z. A., Ziebell H. 2020. Novel targets for engineering Physostegia chlorotic mottle and tomato brown rugose fruit virus-resistant tomatoes: in silico prediction of tomato microRNA targets. The Journal of Life and Environmental Sciences, 8: e10096, doi:

10.7717/peerj.10096: 21 str.

Hurley B., Subramaniam R., Guttman D. S., Desveaux D. 2014. Proteomics of effector-triggered immunity (ETI) in plants. Virulence, 5, 7: 752-760

Hutvágner G., Zamore P. D. 2002. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 5589: 2056-2060

Ibrahim H. M., Alkharouf N.W., Meyer S. L. F., Aly M. A. M., El A., Gamal El-Din K.Y., Hussein E. H. A., Matthews B.F. 2011. Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Experimental Parasitology, 127, 1: 90-99

16

Islam W., Qasim M., Noman A., Adnan M., Tayyab M., Farooq T. H., Wang L. 2018. Plant microRNAs: Front line players against invading pathogens. Microbial Pathogenesis, 1, 118: 9–17

Jopling C.L., Schütz S., Sarnow P. 2008. Position-dependent function for a tandem

microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host and Microbe, 4, 1: 77-85

Kehr J., Kragler F. 2018. Long distance RNA movement. New Phytologist, 218, 1: 29-40 Khraiwesh B., Ossowski S., Weigel D., Reski R., Frank W. 2008. Specific gene silencing by

artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.

Plant Physiology, 148, 2: 684-693

Koch A., Kumar N., Weber L., Keller H., Imani J., Kogel K. H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences, 110, 48:

19324-19329

Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H., Kim V. N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 20: 4051-4060

Li W. X., Oono Y., Zhu J., He X. J., Wu J. M., Iida K., Lu X. Y., Cui X., Jin H., Zhu J. K.

2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20, 8: 2238-2251 Liew P. S., Hair-Bejo M. 2015. Farming of plant-based veterinary vaccines and their

applications for disease prevention in animals. Advances in Virology, 2015, doi:

10.1155/2015/936940, 12 str.

Lu M., Zhang Q., Deng M., Miao J., Guo Y., Gao W., Cui Q. 2008. An analysis of human microRNA and disease associations. PloS One, 3, 10: e3420, doi:

10.1371/journal.pone.0003420: 5 str.

Lucas J. A. 1998. Plant pathology and plant pathogens. 3rd ed. Oxford, Blackwell Publishing:

845 str.

Niu Q. W., Lin S. S., Reyes J.L., Chen K. C., Wu H. W., Yeh S. D., Chua N. H. 2006.

Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24, 11: 1420-1428

Nelson J. W., Atilho R. M., Sherlock M. E., Stockbridge R. B., Breaker R. R. 2017.

Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class.

Molecular Cell, 65, 2: 220-230

Neumann G., Brownlee G. G., Fodor E., Kawaoka Y. 2004. Orthomyxovirus replication transcription and polyadenylation. Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics, 283: 121-143

Pfeffer S., Zavolan M., Grässer F. A., Chien M., Russo J. J., Ju J., John B., Enright A. J., Marks D., Sander C., Tuschl T. 2004. Identification of virus-encoded microRNAs.

Science, 304, 5671: 734–736

17

Pitino M., Coleman A.D., Maffei M. E., Ridout C. J., Hogenhout S.A. 2011. Silencing of Aphid genes by dsRNA feeding from plants. Plos One, 6, 10: e25709, doi:

10.1371/journal.pone.0025709: 8 str.

Ramesh S. V. 2013. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA). Molecular Biotechnology, 55, 1: 87-100

Reinhart B. J., Weinstein E. G., Rhoades M. W. 2002. MicroRNAs in plants. Genes and Development, 16, 13: 1616-1626

Roberts A. P., Jopling C. L. (2010). Targeting viral infection by microRNA inhibition.

Genome Biology, 11, 1: 1-4

Shahid N., Daniell H. 2016. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnology Journal, 14, 11: 2079-2099

Strange R. 2003. Introduction to Plant Pathology. 1st ed. West Sussex, John Wiley and Sons:

464 str.

Uredba Komisije (EU) št. 2020/1191 z dne 11. avgusta 2020o vzpostavitvi ukrepov za preprečevanje vnosa virusa rjave grbančavosti plodov paradižnika (virusa ToBRFV) v Unijo in njegovega širjenja znotraj Unije ter razveljavitvi Izvedbenega sklepa (EU) 2019/1615. 2020. Uradni list Evropske unije, L 262/6

Vega-Arreguín J. C., Jalloh A., Bos J. I., Moffett P. 2014. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species. Molecular Plant Microbe Interact, 27, 8: 770-780

Wang B., Sun Y., Song N., Zhao M., Liu R., Feng H., Wang X., Kang Z. 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1) an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytologist, 215, 1: 338-350

Winter J., Jung S., Keller S., Gregory R. I., Diederichs S. 2009. Many roads to maturity:

microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 3: 228-234 Yang C., Li D., Mao D., Liu X. U. E., Ji C., Li X., Zhao X., Cheng Z., Chen C., and Zhu L.

2013. Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (O ryza sativa L.). Plant Cell and Environment, 36, 12:

2207-2218

Yin Z., Li Y., Han X., Shen F. 2012. Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PloS One, 7, 4: e35765, doi: 10.1371/journal.pone.0035765: 10 str.

Zhang Y. Y., Hong Y. H., Liu Y. R., Cui J., Luan Y. S. 2021. Function identification of miR394 in tomato resistance to Phytophthora infestans. Plant Cell Reports, 40, 8: 1-14 Zhou M., Luo H. 2013. MicroRNA-mediated gene regulation: potential applications for plant

genetic engineering. Plant Molecular Biology, 83, 2: 59-75

18 ZAHVALA

Zahvaljujem se svoji mentorici izr. prof. dr. Nataši Štajner za vso ljubeznivost in pripravljenost za pomoč.

Hvala moji družini, ki verjame vame in me podpira na moji poti.