• Rezultati Niso Bili Najdeni

Vrednotenje modela in načrtovanje ekstrakcije

In document MAGISTRSKO DELO (Strani 89-101)

Rešitve modela precej dobro sovpadajo z eksperimentalno pridobljenimi rezultati.

Osredotočil sem se na ACP, ki v večji meri prehaja med fazama in je zato bolj reprezentativen pri analizi. MBA prehaja zelo malo, spremembe v njegovih koncentracijah pa so velikostnega reda eksperimentalne napake. Za analizo sem uporabil podatke eksperimenta 1, ki ima manjšo relativno napako kot eksperiment 2. V tabeli 14 je predstavljena primerjava eksperimentalnih izkoristkov ekstrakcije z modelno določenimi izkoristki.

ACP izkoristek ACP izkoristek Napaka

140 μl/min 300 μl/min 71,87 % 74,16 % 3,19 %

190 μl/min 400 μl/min 68,18 % 66,10 % 3,05 %

340 μl/min 600 μl/min 62,11 % 57,50 % 7,42 %

Tabela 14 Eksperimentalno in modelno določeni izkoristki ekstrakcij za ACP pri različnih kombinacijah pretokov pufrske in n-heptanske faze.

Modelna simulacija spreminjanja koncentracije ACP v obeh fazah vzdolž mikrokanala pri pretoku pufrske faze 140 μl/min in n-heptanske faze 300 μl/min je prikazana na slikah 29 in 30:

68

Slika 29 Graf koncentracije ACP v mikrokanalu. Leva polovica grafa predstavlja n-heptansko fazo s pretokom 300 μl/min in desna pufrsko fazo s pretokom 140 μl/min.

Slika 30 Graf koncentracije ACP v mikrokanalu. Leva polovica grafa predstavlja pufrsko fazo s pretokom 140 μl/min in desna n-heptansko fazo s pretokom 300 μl/min.

69

S pomočjo modela sem napovedal izkoristka ekstrakcije, ki bi ju dosegli z uporabo enakega mikrokanala, ki bi imel dvakratno (L=664 mm) oziroma trikratno dolžino (L=996 mm) in bi obratoval s pretokom pufrske faze 140 μl/min ter n-heptanske faze 300 μl/min. Z mikrokanalom dvakratne dolžine bi dosegli 91,85 % izkoristek ekstrakcije ACP, z mikrokanalom trikratne dolžine pa 98,34 % izkoristek ekstrakcije ACP. Zadrževalni čas pufrske faze pri mikrokanalu dvakratne dolžine znaša 1,57 s, pri mikrokanalu trikratne dolžine pa 2,35 s.

71

6 Zaključek

Eden izmed namenov uporabe mikrofluidnih naprav je intenzifikacija kemijskih procesov. Magistrska naloga prikazuje uporabo mikrofluidne naprave, natančneje mikrokanala z Y oblikovanim vstopom in izstopom, za vodenje ekstrakcije ACP iz vodne mešanice ACP in MBA v n-heptan. Za učinkovit proces je pomembna ločba faz po končani ekstrakciji. Pri določitvi razmerja pretokov, ki je omogočalo učinkovito ločbo faz na izhodu iz mikrokanala, je bilo za Dolomitov mikročip kot optimalno razmerje med organsko in vodno fazo določeno razmerje 2:1. Pri Micronitovem mikročipu povprečna vrednost eksperimentalno določenih optimalnih razmerij pretokov znaša 2,004:1. Določena razmerja se ujemajo med seboj in so skladna s teoretično izračunanim razmerjem, ki znaša 1,925:1.

Za napoved porazdelitve ACP in MBA v vodni in organski fazi sta bila določena njuna porazdelitvena koeficienta, ki znašata za ACP 0,083 in za MBA 50,231. Po vzpostavitvi ravnotežnega stanja je delež ACP v organski fazi dobrih 92 %, delež MBA v vodni fazi pa dobrih 98 %. Termodinamika torej omogoča precej dobro ločbo snovi, zato je izbira ekstrakcije kot načina za separacijo v tem primeru smiselna.

Mikrokanal se je izkazal za zelo učinkovito napravo za izvajanje ekstrakcije, saj je omogočal doseganje preko 72 % izkoristka ekstrakcije ACP pri zadrževalnem času manjšem od 0,8 s. Višji izkoristek ekstrakcije bi bilo možno doseči z daljšanjem zadrževalnega časa oziroma z uporabo daljšega mikrokanala. Matematični model je napovedal, da bi z uporabo mikrokanala enakega preseka, ki bi imel dvakratno dolžino, pri enakih obratovalnih pogojih dosegli skoraj 92 % izkoristek, z uporabo mikrokanala s trikratno dolžino pa preko 98 % izkoristek ekstrakcije. Za dosego 92 % izkoristka je potreben zadrževalni čas slabe 1,6 s, za 98 % pa dobre 2,3 s.

73

7 Literatura

[1] D. Ghislieri, N. J. Turner: Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Top Catal. 2014, 57, 284–300.

[2] J. H. Schrittwieser, S. Velikogne, W. Kroutil: Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis. 2015, 357, 1655–1685.

[3] M. Simon, B. Wood, S. Ferguson, B. Glennon, R. C. Jones: Diastereomeric Salt Crystallization of Chiral Molecules via Sequential-Coupled Batch Operation.

AIChE Journal. 2019, 65, 604–616.

[4] M. Bilal, H. M. N. Igbal: Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catalysis Letters. 2019, 149, 2204–2217.

[5] M. D. Patil, G. Grogan, A. Bommarius, H. Yun: Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts. 2018, 8, 254–279.

[6] Green Chemistry Challenge Winners. https://www.epa.gov/greenchemistry/green-chemistry-challenge-winners/ (pridobljeno 20. jan. 2021).

[7] C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C.

Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, G. J.

Hughes: Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science. 2010, 329, 305–309.

[8] F. Guo, P. Berglund: Transaminase biocatalysis: optimization and application.

Green Chem. 2017, 19, 333–360.

[9] N. V. Bhagavan, C. E. Ha: Essentials of Medical Biochemistry - 2nd edition.

USA: Elsevier Inc. 2015, str. 227–268.

[10] M. Fuchs, J. E. Farnberger, W. Kroutil: The Industrial Age of Biocatalytic Transamination. European Journal of Organic Chemistry. 2015, 32, 6965–6982.

74

[11] P. J. Dunn, K. K. Hii, M. J. Krische, M. T. Williams: Sustainable Catalysis:

Challenges and Practices for the Pharmaceutical and Fine Chemical Industries.

USA: John Wiley & Sons. 2013, str. 168–181.

[12] J. S. Shin, B. G. Kim: Modeling of the kinetic resolution of α-methylbenzylamine with ω-transaminase in a two-liquid-phase system. Enzyme and Microbial Technology. 1999, 25, 426–432.

[13] J. S. Shin, B. G. Kim, D. H. Shin: Kinetic resolution of chiral amines using packed-bed reactor. Enzyme and Microbial Technology. 2001, 29, 232–239

[14] F. Milletti, L. Storchi, G. Sforna, S. Cross, G. Cruciani: Tautomer Enumeration and Stability Prediction for Virtual Screening on Large Chemical Databases.

Journal of Chemical Information and Modeling. 2009, 49, 68-75

[15] H. H. Lo, S. K. Hsu, W. D. Lin, N. L. Chan, W. H. Hsu: Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol Prog. 2005, 21, 411-415

[16] E. Heuson, F. Charmantray, J. L. Petit, V. Berardinis, T. Gefflaut:

Enantioselective Synthesis of d - and l -α-Amino Acids by Enzymatic Transamination Using Glutamine as Smart Amine Donor. Advanced Synthesis and Catalysis. 2019, 361, 778-785

[17] B. Wang, H. Landa, P. Berglund: An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase. Advanced Chem. Commun. 2013, 49, 161-163

[18] E. S. Park, J. S. Shin: Biocatalytic cascade reactions for asymmetric synthesis of aliphatic amino acids in a biphasic reaction system. Journal of Molecular Catalysis B: Enzymatic. 2015, 121, 9-14

[19] K. E. Cassimjee, C. Branneby, V. Abedi, A. Wells, P. Berglund: Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chemical Communications. 2010, 46, 5569-5571

[20] J. H. Seo, D. Kyung, K. Joo, J. Lee, B. G. Kim: Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using ω-aminotransferases. Biotechnology and Bioengineering. 2010, 108, 253–263

75

[21] H. Yun, Y. H. Yang, B. K. Cho, B. Y. Hwang, B. G. Kim: Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-α-methylbenzylamine from racemic α-methylbenzylamine using ω-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction. Biotechnology Letters.

2003, 25, 809–814

[22] M. Kos: Zakon o kemijskem ravnotežju. Maribor: Fakulteta za naravoslovje in matematiko UM 2009, diplomsko delo.

[23] E. Müller, R. Berger, E. Blass, D. Sluyts, A. Pfennig: Ullmann’s Encyclopedia of Industrial Chemistry: Liquid-Liquid Extraction. Weinheim: Wiley-VCH Verlag 2012, str. 249–307.

[24] J. Stichlmair: Ullmann’s Encyclopedia of Industrial Chemistry: Distillation, 1.

Fundamentals. Weinheim: Wiley-VCH Verlag 2012, str. 426–454.

[25] J. Schlauer: Ullmann’s Encyclopedia of Industrial Chemistry: Absorption, 1.

Fundamentals. Weinheim: Wiley-VCH Verlag 2012, str. 48–71.

[26] D. Ciceri, J. M. Perera, G. W. Stevens: The use of microfluidic devices in solvent extraction. Journal of Chemical Technology & Biotechnology. 2014, 89, 771–786 [27] F. A. Vicente, I. Plazl, P. Žnidaršič-Plazl, S. P. M. Ventura: Separation and

purification of biomacromolecules in microfluidics. Green Chemistry. 2020, 22, 4391-4410

[28] A Boulamanti, J. A. Moya: Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins. Renewable and Sustainable Energy Reviews. 2017, 68, 1205–1212

[29] I. Tosun: The Thermodynamics of Phase and Reaction Equilibria. Newnes:

Elsevier 2012, str. 477–507.

[30] K. G. Denbigh: The principles of chemical equilibrium: with applications in chemistry and chemical engineering. Cambridge: Cambridge University Press 1981, str. 215–267.

[31] J. G. Speight: Environmental organic chemistry for engineers. Oxford:

Butterworth-Heinemann 2017, str. 263–303.

[32] C. McQueen: Comprehensive toxicology. Amsterdam: Elsevier 2010, str. 75–109.

76

[33] N. Assmann, A. Ładosz, P. R. Rohr: Continuous Micro Liquid-Liquid Extraction.

Chem. Eng. Technol. 2013, 36, 921–936

[34] H. Schlichting, K. Gersten: Boundary-Layer Theory. Berlin: Springer-Verlag 2017, str. 415–420.

[35] P. Žnidaršič-Plazl: Let the Biocatalyst Flow. Acta Chim. Slov. 2021, 68, 1–16 [36] M. Joanicot, A. Ajdari: APPLIED PHYSICS: Droplet Control for Microfluidics.

Science. 2005, 309, 887–888

[37] N. Miložič, M. Lubej, U. Novak, P. Žnidaršič Plazl, I. Plazl: Evaluation of Diffusion Coefficient Determination using a Microfluidic Device. Chem.

Biochem. Eng. Q. 2014, 28, 215–223.

[38] A. Maurice, J. Theisen, J. C. P. Gabriel: Microfluidic lab-on-chip advances for liquid–liquid extraction process studies. Current Opinion in Colloid & Interface Science. 2020, 46, 20–35.

[39] J. B. Fournier, P. Galatola: Corrections to the Laplace law for vesicle aspiration in micropipettes and other confined geometries. Soft Matter. 2008, 4, 2463–2470.

[40] A. Pohar, M. Lakner, I. Plazl: Parallel flow of immiscible liquids in a microreactor: modeling and experimental study. Microfluid Nanofluid. 2012, 12, 307–316.

[41] Y. Huang, T. Meng, T. Guo, W. Li, W Yan, X. Li, Z. Tong: Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device. Microfluidics and Nanofluidics. 2013, 16, 483–491.

[42] S. Hwan Hwang, A. M. Gonzalez-Suarez, G. Stybayeva, A. Revzin: Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology. Clinical and Experimental Otorhinolaryngology. 2021, 14, 29-42.

[43] Y. Kikutani, K. Mawatari, A. Hibara, T. Kitamori: Circulation microchannel for liquid–liquid microextraction. Microchimica Acta. 2008, 164, 241-247.

77

[44] A. Aota, M. Nonaka, A. Hibara, T. Kitamori: Countercurrent Laminar Microflow for Highly Efficient Solvent Extraction. Angewandte Chemie International Edition. 2007, 46, 878–880.

[45] H. Xiao, D. Liang, G. Liu, M. Guo, W. Xing, J. Cheng: Initial study of two-phase laminar flow extraction chip for sample preparation for gas chromatography. Lab on a Chip. 2006, 6, 1067–1072.

[46] C. P. Klages, C. Berger, M. Eichler, M. Thomas: Microplasma-Based Treatment of Inner Surfaces in Microfluidic Devices. Contributions to Plasma Physics.

2007, 47, 49–56.

[47] K. Yoshihisa, A. Yoshimura, Y. Shibamori, K. Fuchigami, N. Kubota:

Hydrophilic modification of plastic surface by using microwave plasma irradiation. IHI Engineering Review. 2013, 46, 29-33.

[48] T. Maruyama, H. Matsushita, J. Uchida, F. Kubota, N. Kamiya, M. Goto: Liquid Membrane Operations in a Microfluidic Device for Selective Separation of Metal Ions. Analytical Chemistry. 2013, 76, 4495–4500.

[49] J. Theisen, C. Penisson, J. Rey, T. Zemb, J. Duhamet, J. C. P. Gabriel: Effects of porous media on extraction kinetics: Is the membrane really a limiting factor?

Journal of Membrane Science. 2019, 586, 318–325.

[50] F. Hakiki, D. A. Maharsi, T. Marhaendrajana: Surfactant-Polymer Coreflood Simulation and Uncertainty Analysis Derived from Laboratory Study. Journal of Engineering & Technological Sciences. 2015, 47, 706-724.

[51] V. Reddy, J. D. Zahn: Interfacial stabilization of organic–aqueous two-phase microflows for a miniaturized DNA extraction module. Journal of Colloid and Interface Science. 2005, 286, 158–165.

[52] A. L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker: Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors.

Chemical Engineering Science. 2008, 63, 4035–4044.

[53] P. Kuban, J. Berg, P. K. Dasgupta: Vertically Stratified Flows in Microchannels.

Computational Simulations and Applications to Solvent Extraction and Ion Exchange. Analytical Chemistry. 2003, 75, 3549–3556.

78

[54] P. Žnidaršič-Plazl, I. Plazl: Steroid extraction in a microchannel system—

mathematical modelling and experiments. Lab Chip. 2007, 7, 883–889.

[55] I. Plazl, M. Lakner: Uvod v modeliranje procesov. Ljubljana: Fakulteta za kemijo in kemijsko tehnologijo 2011, str. 21–48.

[56] S. R. Upreti: Process Modeling and Simulation for Chemical Engineers: Theory and Practice. Hoboken: John Wiley & Sons Ltd 2017, str. 1–16.

[57] L. M. Ferrareso Lona: A Step by Step Approach to the Modeling of Chemical Engineering Processes. Cham: Springer International Publishing. 2018, str. 1–47.

[58] R. Aris: Mathematical Modeling – A Chemical Engineering Perspective. London:

Academic Press. 1999, str. 1–43.

[59] S. R. Upreti: Process Modeling and Simulation for Chemical Engineers: Theory and Practice. Hoboken: John Wiley & Sons Ltd 2017, str. 16–57.

[60] S. R. Upreti: Process Modeling and Simulation for Chemical Engineers: Theory and Practice. Hoboken: John Wiley & Sons Ltd 2017, str. 59–78.

[61] S. R. Upreti: Process Modeling and Simulation for Chemical Engineers: Theory and Practice. Hoboken: John Wiley & Sons Ltd 2017, str. 79–137.

[62] L. M. Ferrareso Lona: A Step by Step Approach to the Modeling of Chemical Engineering Processes. Cham: Springer International Publishing. 2018, str. 145–

169.

[63] I. Plazl, M. Lakner: Uvod v modeliranje procesov. Ljubljana: Fakulteta za kemijo in kemijsko tehnologijo 2011, str. 133–157.

[64] B. Perič: Ekstrakcija v miniaturiziranem pretočnem sistemu z intenzivnim kontaktiranjem faz. Ljubljana: Fakulteta za kemijo in kemijsko tehnologijo UL 2019, magistrsko delo.

[65] Y-Junction Chip. Dolomite Microfluidics. https://www.dolomite-microfluidics.com/product/y-junction-chip/ (pridobljeno 18. nov. 2020).

[66] N. Miložič, M. Lubej, U. Novak, P. Žnidaršič Plazl, I. Plazl: Evaluation of Diffusion Coefficient Determination using a Microfluidic Device. Chem.

Biochem. Eng. Q. 2014, 28, 215–223.

79

[67] M. Bajić: Development of miniaturized packed bed reactors with immobilized enzymes for biocatalytic processes. Ljubljana: Fakulteta za kemijo in kemijsko tehnologijo UL 2017, doktorska disertacija.

[68] M. Seručnik, F. A. Vicente, Ž. Brečko, J. A. P. Coutinho, S. P. M. Ventura, P.

Žnidaršič Plazl: Development of a Microfluidic Platform for R-Phycoerythrin Purification Using an Aqueous Micellar Two-Phase System. ACS Sustainable Chem. Eng. 2020, 46, 17097–17105.

[69] U. Novak, A. Pohar, I. Plazl, P. Žnidaršič Plazl: Ionic liquid-based aqueous two-phase extraction within a microchannel system. Separation and Purification Technology. 2012, 97, 172-178.

[70] U. Novak, M. Lakner, I. Plazl, P. Žnidaršič Plazl: Experimental studies and modeling of α-amylase aqueous two-phase extraction within a microfluidic device. Microfluidics and Nanofluidics. 2015, 19, 75–83.

[71] P. Žnidaršič Plazl: Enzymatic microreactors utilizing non-aqueous media.

Chimica Oggi. 2014, 32, 54–60.

[72] H. Land: Amine Transaminases in Biocatalytic Amine Synthesis. Stockholm: KTH Royal Institute of Technology 2016, doktorska disertacija.

[73] N. Miložič, M. Lubej, M. Lakner, P. Žnidaršič Plazl, I. Plazl: Theoretical and experimental study of enzyme kinetics in a microreactor system with surface-immobilized biocatalyst. Chemical Engineering Journal. 2017, 313, 374-381.

[74] E. Chappel: A Review of Passive Constant Flow Regulators for Microfluidic Applications. Appl. Sci. 2020, 10, 8858-8887.

In document MAGISTRSKO DELO (Strani 89-101)