• Rezultati Niso Bili Najdeni

LITERATURA

In document DIPLOMSKO DELO (Strani 85-89)

1. A. Villanueva: Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380(15), str. 1450–1462.

2. A. J. Craig, J. von Felden, T. Garcia-Lezana, S. Sarcognato, A. Villanueva:

Tumour Evolution in Hepatocellular Carcinoma. Nature Reviews Gastroenterology and Hepatology. Nature Research March 1, 2020, pp.

139–152.

3. T. A. Dragani: Risk of HCC: Genetic Heterogeneity and Complex Genetics.

Journal of Hepatology. February 2010, pp. 252–257.

4. R. Yao, H. Zou, W. Liao: Prospect of Circular RNA in Hepatocellular Carcinoma: A Novel Potential Biomarker and Therapeutic Target. Frontiers in Oncology. Frontiers Media S.A. August 23, 2018.

5. L. Qiu, T. Wang, Q. Ge, H. Xu, Y. Wu, Q. Tang, K. Chen: Circular RNA signature in hepatocellular carcinoma. J. Cancer 2019, 10(15), str. 3361–

3372.

6. L. S. Kristensen, M. S. Andersen, L. V. W. Stagsted, K. K. Ebbesen, T. B.

Hansen, J. Kjems: The Biogenesis, Biology and Characterization of Circular RNAs. Nature Reviews Genetics. Nature Publishing Group November 1, 2019, pp. 675–691.

7. S. Qu, Z. Liu, X. Yang, J. Zhou, H. Yu, R. Zhang, H. Li: The Emerging Functions and Roles of Circular RNAs in Cancer. Cancer Letters. Elsevier Ireland Ltd February 1, 2018, pp. 301–309.

8. W. R. Jeck, J. A. Sorrentino, K. Wang, M. K. Slevin, C. E. Burd, J. Liu, W.

F. Marzluff, N. E. Sharpless: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19(2), str. 141–157.

9. S. Qu, X. Yang, X. Li, J. Wang, Y. Gao, R. Shang, W. Sun, K. Dou, H. Li:

Circular RNA: A New Star of Noncoding RNAs. Cancer Letters. Elsevier Ireland Ltd September 1, 2015, pp. 141–148.

10. M.-T. Hsu, M. Coco-Prados: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979, 280, str.

339–340.

Molecular Cancer. BioMed Central Ltd. May 23, 2017.

13. W. Hu, Z. Y. Bi, Z. L. Chen, C. Liu, L. L. Li, F. Zhang, Q. Zhou, W. Zhu, Y.

Y. Y. Song, … D. J. Li: Emerging Landscape of Circular RNAs in Lung Cancer. Cancer Letters. Elsevier Ireland Ltd July 28, 2018, pp. 18–27.

14. P. T. Mumtaz, Q. Taban, M. A. Dar, S. Mir, Z. U. Haq, S. M. Zargar, R. A.

Shah, S. M. Ahmad: Deep Insights in Circular RNAs: From Biogenesis to Therapeutics. Biological Procedures Online. BioMed Central Ltd. May 15, 2020.

15. X. Zhao, Y. Cai, J. Xu: Circular Rnas: Biogenesis, Mechanism, and Function in Human Cancers. International Journal of Molecular Sciences.

MDPI AG August 2, 2019.

16. J. Zang, D. Lu, A. Xu: The Interaction of CircRNAs and RNA Binding Proteins: An Important Part of CircRNA Maintenance and Function. Journal of Neuroscience Research. John Wiley and Sons Inc. January 1, 2020, pp.

87–97.

17. X. Geng, Y. Jia, Y. Zhang, L. Shi, Q. Li, A. Zang, H. Wang: Circular RNA:

Biogenesis, Degradation, Functions and Potential Roles in Mediating Resistance to Anticarcinogens. Epigenomics. Future Medicine Ltd. 2020, pp. 267–283.

18. L.-A. Macfarlane, P. R. Murphy: MicroRNA: Biogenesis, Function and Role in Cancer. . Current Genomics, 2010, 11.

19. J. O’Brien, H. Hayder, Y. Zayed, C. Peng: Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. Frontiers Media S.A. August 3, 2018.

20. T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen, C. K.

Damgaard, J. Kjems: Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495(7441), str. 384–388.

21. W. W. Du, W. Yang, Y. Chen, Z. K. Wu, F. S. Foster, Z. Yang, X. Li, B. B.

Yang: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur.

Heart J. 2017, 38(18), str. 1402–1412.

22. W. W. Du, W. Yang, E. Liu, Z. Yang, P. Dhaliwal, B. B. Yang: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016, 44(6), str. 2846–2858.

23. Y. Wang, Z. Wang: Efficient backsplicing produces translatable circular mRNAs. RNA 2015, 21(2), str. 172–179.

24. Y. Yang, X. Fan, M. Mao, X. Song, P. Wu, Y. Zhang, Y. Jin, Y. Yang, L. L.

Chen, … Z. Wang: Extensive translation of circular RNAs driven by N 6 -methyladenosine. Cell Res. 2017, 27(5), str. 626–641.

25. N. Abe, K. Matsumoto, M. Nishihara, Y. Nakano, A. Shibata, H. Maruyama, S. Shuto, A. Matsuda, M. Yoshida, … H. Abe: Rolling Circle Translation of Circular RNA in Living Human Cells. Sci. Rep. 2015, 5.

26. Z. Li, C. Huang, C. Bao, L. Chen, M. Lin, X. Wang, G. Zhong, B. Yu, W.

Hu, … G. Shan: Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22(3), str. 256–264.

27. R. Ashwal-Fluss, M. Meyer, N. R. Pamudurti, A. Ivanov, O. Bartok, M.

Hanan, N. Evantal, S. Memczak, N. Rajewsky, S. Kadener: CircRNA Biogenesis competes with Pre-mRNA splicing. Mol. Cell 2014, 56(1), str.

55–66.

28. W. R. Jeck, N. E. Sharpless: Detecting and Characterizing Circular RNAs.

Nature Biotechnology. Nature Publishing Group 2014, pp. 453–461.

29. X. Shang, G. Li, H. Liu, T. Li, J. Liu, Q. Zhao, C. Wang: Comprehensive circular RNA profiling reveals that hsa-circ-0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development. Med.

(United States) 2016, 95(22).

30. J. Yu, Q. guo Xu, Z. guang Wang, Y. Yang, L. Zhang, J. zhao Ma, S. han Sun, F. Yang, W. ping Zhou: Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol. 2018, 68(6), str. 1214–

1227.

31. Z. Yao, J. Luo, K. Hu, J. Lin, H. Huang, Q. Wang, P. Zhang, Z. Xiong, C.

He, … Y. Yang: ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol.

Oncol. 2017, 11(4), str. 422–437.

32. W. C. Liang, C. W. Wong, P. P. Liang, M. Shi, Y. Cao, S. T. Rao, S. K. W.

Tsui, M. M. Y. Waye, Q. Zhang, … J. F. Zhang: Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019, 20(1).

33. M. Corley, M. C. Burns, G. W. Yeo: How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Molecular Cell. Cell Press April 2, 2020, pp. 9–29.

34. F. Gebauer, T. Schwarzl, J. Valcárcel, M. W. Hentze: RNA-Binding Proteins in Human Genetic Disease. Nature Reviews Genetics. Nature Research March 1, 2021, pp. 185–198.

35. M. W. Hentze, A. Castello, T. Schwarzl, T. Preiss: A Brave New World of RNA-Binding Proteins. Nature Reviews Molecular Cell Biology. Nature Publishing Group May 1, 2018, pp. 327–341.

36. D. SenGupta: RNA-Binding Domains in Proteins. In: Brenner’s proteins in the post-transcriptional control of gene expression. Brief. Funct.

Genomics 2010, 9(5–6), str. 391–404.

39. H. Qin, H. Ni, Y. Liu, Y. Yuan, T. Xi, X. Li, L. Zheng: RNA-Binding Proteins in Tumor Progression. Journal of Hematology and Oncology. BioMed Central July 11, 2020.

Khanna, B. Győrffy, C. G. Pack, … Y. Y. Park: RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics 2020, 10(18), str. 7974–7992.

41. NONO - Non-POU domain-containing octamer-binding protein - Homo

sapiens (Human) - NONO gene & protein

https://www.uniprot.org/uniprot/Q15233 (pridobljeno 26. 6. 2021).

42. G. Benegiamo, L. S. Mure, G. Erikson, H. D. Le, E. Moriggi, S. A. Brown, S. Panda: The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab. 2018, 27(2), str. 404- 418.e7.

43. S. M. Kessler, K. Hosseini, U. K. Hussein, K. M. Kim, M. List, C. S.

Schultheiß, M. H. Schulz, S. Laggai, K. Y. Jang, A. K. Kiemer:

Hepatocellular carcinoma and nuclear paraspeckles: Induction in chemoresistance and prediction for poor survival. Cell. Physiol. Biochem.

2019, 52(4), str. 787–801.

44. M. Shen, R. Zhang, W. Jia, Z. Zhu, X. Zhao, L. Zhao, G. Huang, J. Liu:

Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene 2021, 40(24), str.

4167–4183.

45. Z. Hu, L. Dong, S. Li, Z. Li, Y. Qiao, Y. Li, J. Ding, Z. Chen, Y. Wu, … X.

He: Splicing Regulator p54 nrb /Non-POU Domain-Containing Octamer-Binding Protein Enhances Carcinogenesis Through Oncogenic Isoform Switch of MYC Box-Dependent Interacting Protein 1 in Hepatocellular Carcinoma. 548 Hepatol. 2020, 72(2).

46. H. Ding, J. Liu, C. Wang, Y. Su: NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA. Cancer Cell Int. 2020, 20(1).

47. PCBP2 - Poly(rC)-binding protein 2 - Homo sapiens (Human) https://www.uniprot.org/uniprot/?query=pcbp2&sort=score (pridobljeno 26.

6. 2021).

48. C. Yuan, M. Chen, X. Cai: Advances in Poly(RC)-Binding Protein 2:

Structure, Molecular Function, and Roles in Cancer. Biomedicine and Pharmacotherapy. Elsevier Masson s.r.l. July 1, 2021.

49. Y. Liu, X. Zhang, J. Lin, Y. Chen, Y. Qiao, S. Guo, Y. Yang, G. Zhu, Q. Pan,

… F. Sun: CCT3 acts upstream of YAP and TFCP2 as a potential target and tumour biomarker in liver cancer. Cell Death Dis. 2019, 10(9).

50. R. Razpotnik, P. Nassib, T. Kunej, D. Rozman, T. Režen: Identification of novel RNA binding proteins influencing circular RNA expression in hepatocellular carcinoma. Int. J. Mol. Sci. 2021, 22(14).

51. H. Nakabayashi, K. Taketa, T. Yamane, M. Miyazaki, K. Miyano, J. Sato:

Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium. Gann, Japanese J. Cancer Res.

1984, 75(2), str. 151–158.

52. H. Nakabayashi, K. Taketa, K. Miyano, T. Yamane, J. Sato: Growth of

Human Hepatoma Cell Lines with Differentiated Chemically Defined Medium. 1982, 42(September), str. 3858–3863.

53. F. Kasai, N. Hirayama, M. Ozawa, M. Satoh, A. Kohara: HuH-7 reference genome profile : complex karyotype composed of massive loss of heterozygosity. Hum. Cell 2018, 31(3), str. 261–267.

54. AccuChip Kit

http://www.nanoentek.com/theme/nanont2_en/shop/02/product01_view.p hp?it_id=1547538836 (pridobljeno 26. 6. 2021).

55. Technologies : SignaGen Laboratories

http://signagen.com/index.php?main_page=Technologies (pridobljeno 29. TRIzol (TRI Reagent). Cold Spring Harb. Protoc. 2010, 5(6), str. 1–4.

59. S. Lightfoot: Quantitation comparison of total RNA using the Agilent 2100 bioanalyzer , ribo- green analysis and UV spectrometry Application. 2002, str. 1–8.

60. T. Jinadasa, R. W. Cole, C. M. Brown, R. Weil, K. Kroll, K. Powers:

Resolution and Quality Control of Confocal Spread Functions. 2012, 23.

61. CircInteractome https://circinteractome.nia.nih.gov/index.html (pridobljeno 25. 7. 2021).

62. Primer designing tool Primer-BLAST

https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (pridobljeno 25. 7. 2021).

63. T. Higashimoto, F. Urbinati, A. Perumbeti, G. Jiang, A. Zarzuela, L. J.

Chang, D. B. Kohn, P. Malik: The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther. 2007, 14(17), str. 1298–1304.

64. Western blot membrane stripping for restaining protocol | Abcam https://www.abcam.com/protocols/western-blot-membrane-stripping-for-restaining-protocol (pridobljeno 31. 8. 2021).

65. X. Zhang, L. Hua, D. Yan, F. Zhao, J. Liu, H. Zhou, J. Liu, M. Wu, C. Zhang,

… B. Hu: Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol. Rep.

2016, 36(6), str. 3456–3464.

66. M. T. Donato, L. Tolosa, M. J. Gómez-Lechón: Culture and Functional Characterization of Human Hepatoma HepG2 Cells. In: Protocols in In Vitro Hepatocyte Research. M. Vinken, V. Rogiers (eds.), New York, NY:

Springer New York 2015, pp. 77–93.

In document DIPLOMSKO DELO (Strani 85-89)