• Rezultati Niso Bili Najdeni

LITERATURA

In document MAGISTRSKO DELO (Strani 65-68)

ACOSTA-SANTAMARÍA, P., IBATÁ-SOTO, A. & LÓPEZ-VÁSQUEZ, A., 2016.

Evaluation of the discoloration of methyl orange using black sand as semiconductor through photocatalytic oxidation and reduction. World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering, vol. 10, str. 10.

ATTA, R.M., 2018. Bringing thermoelectricity into reality edited by Patricia Arangure:

Thermoelectric cooling. London : Intech Open, 374 str.

BAILEY, S.W., CAMERON, E.M., SPEDDEN, H.R. & WEEGE, R.J., 1956. The alteration of ilmenite in beach sands. Economic Geology, vol. 51, str. 263–279.

BARU, S. & BHATIA, S., 2020. A review on thermoelectric cooling technology and its applications. IOP Conference Series: Materials Science and Engineering, vol. 91.

BERNAL, J.D. & MACKAY, A.L., 1964. Topotaxy. Tschermarks mineralogische und petrographische Mitteilungen, vol. 10, str. 331–340.

BERNIK, S. & PRIBOŠEK, M., 2013. Construction and characteristics of a Z-meter setup for thermoelectric measurements of materials. Ljubljana : MIDEM - Society for Microelectronics, Electronic Components and Materials. Proceedings of the 49th International conference on Microelectronics, Devices and Materials MIDEM Kranjska Gora, str. 121-127.

CALLAWAY, J. & von BAEYER, H.C., 1960. Effect of point imperfections on lattice thermal conductivity. Physical Review, vol. 120, str. 1149–1154.

CAÑAS-MARTÍNEZ, D. M., GAUTHIERB, G. H. & PEDRAZA-AVELLA, J. A., 2019.

Photo-oxidative and photo-reductive capabilities of ilmenite-rich black sand concentrates using methyl orange as a probe molecule. Photochemical and Photobiological Sciences, vol. 18, str.

912–919.

CHEN, I.W. & WANG, X.H., 2000. Sintering dense nanocrystalline oxide with-out final stage grain growth. Nature, vol. 404, str.168–171.

CHEN, Z.G., HAN, G., YANG, L. & ZOU, J., 2012. Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, vol. 22, str. 535–549.

CHEN, C., GIOVANNELLI, F. & DELORME, F., 2018. Thermoelectric properties of Fe2-xTi 1+xO5 solid solutions: Influence of microcracking and Nb substitution. Ceramics International, vol. 44, str. 21794–21799.

CONSENSUS ECONOMICS INC., 2010 – 2021. Ilmenite [online]. [citirano 22.3.2021].

Dostopno na svetovnem spletu: <https://www.consensuseconomics.com/publications/energy-and-metals-consensus-forecasts/ilmenite-price-forecasts/>.

Tina Radošević: Oksidacija ilmenita za pripravo funkcionalne keramike

48

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J., 1992. An introduction to the rock forming minerals. Mineralogical Magazine, vol. 36, str. 150–151.

DENT GLASSER, L. S., GLASSER, F. P. & TAYLOR, H. F. W., 1962. Topotactic reactions in inorganic oxy-compounds. Quarterly Reviews, Chemical Society, vol. 16, str. 343–360.

GE, Z. H., ZHAO, L. D., WU, D., LIU, X., ZHANG, B. P., LI, J. F. & HE, J., 2016. Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, vol. 19, str.

227–239.

GREY, I. E. & REID, A. F., 1975. The structure of psevdorutile and its role in the natural alteration of ilmenite. American Mineralogist, vol. 60, str. 898–906.

GREY, I. E. & LI, C., 2003. Hydroxylian psevdorutile derived from picroilmenite in the Murray Basin: Southeastern Australia. Mineralogical Magazine, vol. 67, str. 733–747.

GUO, W. Q., MALUS, S., RYAN, D. H. & ALTOUNIAN, Z., 1999. Crystal structure and cation distributions in the FeTi2O5-Fe2TiO5 solid solution series. Journal of Physics : Condensed Matter, vol. 11, str. 6337–6346.

GUPTA, S.K., RAJAKUMAR, V. & GRIEVESON, P., 1991. Phase transformations during heating of ilmenite concentrates. Metallurgical Transactions B, vol. 22, str. 711–716.

HAN, C., LI, Z. & DOU, S., 2014. Recent progress in thermoelectric materials. Chinese Science Bulletin, vol. 59, str. 2073–2091.

HE, J., LIU, Y. & FUNAHASHI, R., 2011. Oxide thermoelectrics: The challenges, progress, and outlook. Journal of Materials Research, vol. 26, str. 1762–1772.

JAZIRI, N., BOUGHAMOURA, A., MÜLLER, J., MEZGHANI, B., TOUNSI, F. & ISMAIL, M., 2020. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports, vol. 6, str. 264–287.

KORNELIUSSEN, A., MCENROE, S. A., NILSSON, L.P., SCHIELLERUP , H., GAUTN EB, H., MEYER, G.B. & STERSETH, L.R., 2000. An overview of titanium deposits in Norway. Norges geologiske utidersekelse Bulletin, vol. 436, str. 27–38.

LAGAREC K. & RANCOURT D., 1998. Recoil User Manual -- Mossbauer spectral analysis software for Window. Ottawa : University of Ottawa.

LI, C., JIANG, F., LIU, C., LIU, P. & XU, J., 2019. Present and future thermoelectric

materials toward wearable energy harvesting. Applied Materials Today, vol. 15, str. 543–557.

LIN, L., ZHANG, Y. F., LIU, H. B., MENG, J. H., CHEN, W.H. & WANG, X. D., 2019. A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, vol. 160, 114087.

LIN, Y. H., LAN, J. & NAN, C., 2019. Oxide thermoelectric materials from basic principles to applications. Weinheim : Wiley, 280 str.

Tina Radošević: Oksidacija ilmenita za pripravo funkcionalne keramike

49

LINDSLEY, D. H., 1962. Investigation in the system FeO-Fe2O3-TiO2. Carnegie Intitute Washington Year Book, vol. 61, str. 100–106.

MORAD, S. & ALDAHAN, A. A., 1986. Alteration of detrital Fe-Ti oxides in sedimentary rocks. Bulletin of the Geological Society of America, vol. 97, str. 567–578.

MURAD, E. & CASHION, J., 2004. Mössbauer spectroscopy of environmental materials and their industrial utilization: mineral processing, Titanium ores. Boston : Springer, 418 str.

MÜCKE, A. & CHAUDHURI, J. N. B., 1991. The continuous alteration of ilmenite through psevdorutile to leucoxene. Ore Geology Reviews, vol. 6, str. 25–44.

NASA National Aeronautics and Space Administration, 2005. Hubble Prospects For Resources on The Moon [online]. [citirano 07.4.2021]. Dostopno na svetoven spletu:

<https://www.nasa.gov/vision/universe/ solarsystem/hubble_moon.html>.

NOZARIASBMARZ, A., KISHORE, R. A., POUDEL, B., SAPARAMADU, U., LI, W., CRUZ, R. & SHASHANK, P., 2019. High power density body heat energy harvesting. Priya ACS Applied Materials and Interfaces, vol. 11, str. 40107– 40113.

NOZARIASBMARZ, A., COLLINS, H., DSOUZA, K., POLASH, M. H., HOSSEINI, M., HYLAND, M., LIU, J., MALHOTRA, A., ORTIZ, F.M., MOHADDES, F., RAMESH, V. P., SARGOLZAEIAVAL, Y., SNOUWAERT, N., ÖZTURK, M. C. & VASHAEE, D., 2020.

Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, vol. 258, 114069.

PAKIZEH, E. & MOHAMMADI, M., 2021. Structural, electronic, magnetic and thermoelectric properties of psevdobrookite-type Fe2-xTi1+xO5 (x = 0, 0.5 and 1) compounds:

DFT + U approaches. Journal of Physics and Chemistry of Solids, vol. 149, 109802.

PAPIKE, J., TAYLOR, L. & SIMON, S., 1991. Lunar minerals: In the lunar sourcebook, edited by HEIKEN G. H., VANIMAND. T. AND FRENCH B. M. New York : Cambridge University Press, 736 str.

PERKS, C., & MUDD, G., 2020. A detailed assessment of global Zr and Ti production. Mineral Economics, [online first], str. [1-26].

REČNIK, A., STANKOVIĆ, N. & DANEU, N., 2015. Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia). Contributions to Mineralogy and Petrology, vol. 169, str. 19.

REJITH, R.G. & SUNDARARAJAN, M., 2018. Combined magnetic, electrostatic, and gravity separation techniques for recovering strategic heavy minerals from beach sands. Marine Georesources & Geotechnology, vol 36, str. 959–965.

SCHROEDER, P.A., LE GOVLAN, J.J. & RODEN, M.D., 2002. Weathering of ilmenite from granite and chlorite schist in the Georgia Piedmont. American Mineralogist, vol. 87, str. 1616–

1625.

Tina Radošević: Oksidacija ilmenita za pripravo funkcionalne keramike

50

SEITZ, G., PENIN, N., DECOUX, L., WATTIAUX, A., DUTTINE, M. & GAUDON, M., 2016. Near the ferric psevdobrookite composition (Fe2TiO5). Inorganic Chemistry, vol. 55, str.

2499–2507.

SON, H.W., GUO, Q., SUZUKI, Y., KIM, B. N. & MORI, T., 2020. Thermoelectric properties of MgTi2O5/TiN conductive composites prepared via reactive spark plasma sintering for high temperature functional applications. Scripta Materialia, vol. 178, str. 44–55.

SIDDIQUE, A. R. M., MAHMUD, S. & HEYST, B. V., 2017. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges.

Renewable and Sustainable Energy Reviews, vol. 73, str. 730–744.

SNYDER, G.J. & TOBERER, E.S., 2008. Complex thermoelectric materials. Nature Materials, vol. 7, str. 105–114.

STANKOVIĆ, N., REČNIK, A. & DANEU, N., 2016. Topotaxial reactions during oxidation of ilmenite single crystal. Journal of Materials Science, vol. 51, str. 958–968.

TEUFER, G. & TEMPLE, A., 1966. Psevdorutile—a new mineral intermediate between ilmenite and rutile in the N alteration of ilmenite. Nature, vol. 211, str. 179–181.

U.S. GEOLOGICAL SURVEY, 2020. Mineral commodity summaries 2020. Washington : Geological Survey, 20 str.

YAVUZ, F., 2021. WinMIgob: A Windows program for magnetite–ilmenite geothermometer and oxygen barometer. Journal of Geosciences, vol. 66, str. 51–69.

YUAN, Z., GONG, J., XU S., LI, Z. & TANG, G., 2017. Investigation of the thermoelectric properties of reduced Nb-doped TiO2-δ ceramics. Journal of Alloys and Compounds, vol. 710, str. 778–783.

ZHANG, G., & OSTROVSKI, O., 2002. Effect of preoxidation and sintering on properties of ilmenite concentrates. International Journal of Mineral Processing, vol. 64, str. 201–218.

ZHAO, D. & TAN, G., 2014. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, vol. 66, str. 15–24.

ZHENG, X.F., LIU, C.X., YAN, Y.Y. & WANG, Q., 2014. A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews, vol. 32, str. 486–503.

In document MAGISTRSKO DELO (Strani 65-68)