• Rezultati Niso Bili Najdeni

Vpliv antioksidantov

In document Neža Gaube (Strani 64-75)

V drugem delu smo se osredotočili na to, ali lahko z uporabo antioksidantov preprečimo celično smrt sproženo s H2O2. Uporabili smo dva antioksidanta – NAC in vitC, ki imata terapevtski potencial [76,77]. NAC lovi proste radikale z direktno interakcijo z ROS preko redoks potenciala tiolne skupine ali pa indirektno z višanjem ravni glutationa v celici [37]. VitC pa je donor elektronov in zato lahko reducira spojine z neparnimi elektroni, kot so recimo nekateri ROS (superoksid in hidroksilni radikal) [95].

Najprej smo poskusili z dodatkom antioksidantov NAC in vitC izboljšati viabilnost celic divjega tipa in celic z izbitim genom za stefin B po tretiranju s H2O2 (slika 10). Dodatek NAC je viabilnost celic z izbitim genom za stefin B izboljšal približno za 25 %. Pri celicah divjega tipa pa ni bilo signifikantne spremembe v smrtnosti ob dodatku NAC.

Presenetljivo pa je bilo, da se je delež smrtnosti celic po tretiranju z vitC in H2O2 povišal v primerjavi s celicami tretiranimi zgolj s H2O2.

42

V naslednjem koraku smo preverili, kako bo dodatek antioksidantov NAC in vitC vplival na pH lizosomov, nastanek ROS in oksidacijo kardiolipina. Dodatek NAC in vitC pri celicah divjega tipa nista vplivala na pH (slika 11). Je pa dodatek vitC statistično značilno povečal nastanek ROS (slika 12) in oksidacijo kardiolipina (slika 13). Dodatek NAC je pri celicah divjega tipa zmanjšal nastanek ROS (slika 12), pri oksidaciji kardiolipina pa ni bilo večjih sprememb (slika 13). Pri celicah z izbitim genom za stefin B je NAC zmanjšal nastanek ROS (slika 12), oksidacijo kardiolipina (slika 13) in spremembo v pH (slika 11). VitC pa na pH v lizosomih ni vplival, je pa statistično značilno povečal nastanek ROS (slika 12) in oksidacijo kardiolipina (slika 13).

Na podlagi rezultatov lahko sklepamo, da antioksidant NAC ščiti celice z izbitim genom za stefin B pred celično smrtjo zaradi ROS. NAC je sintetični prekurzor znotrajceličnega cisteina in glutationa, zato najverjetneje pride do njegovega učinka zaradi lastnosti direktnega lovljenja prostih radikalov in zaradi posrednega višanja ravni glutationa v celicah [112]. Možno je, da je NAC zmanjšal poškodbe lizosomov pri celicah z odsotnim stefinom B s tem, da je preprečil Fentonovo reakcijo v lizosomih. V lizosomih namreč poteka fentonova reakcija, kjer nastanejo zelo reaktivni hidroksilni radikali, ki so pogosto tudi vzrok lipidne peroksidacije [88]. Rezultati vitC so bili presenetljivi, saj je prišlo do poslabšanja deleža celične smrti in poškodb organelov. Možno je, da je do tega prišlo zato, ker vitamin C v mediju že ob nizki koncentraciji železa ali druge kovine lahko oksidira in generira H2O2 [95]. Z dodatkom kelatorja železa bi zato lahko povečali učinkovitost vitC. Prav tako, če bi celice tretirali s H2O2 in kelatorjem železa, verjetno ne bi prišlo do nastanka hidroksilnega radikala v lizosomih, kar bi lahko že izboljšalo preživetje celic v kolikor je ravno nastanek le-tega pomemben pri indukciji celične smrti.

Poleg dodatka kelatorja železa pa bi lahko še optimizirali koncentracijo vitC. Znano je namreč, da je učinek vitC odvisen od njegove koncentracije. Pri nizkih koncentracijah deluje kot antioksidant, pri visokih koncentracijah pa ima oksidativni učinek [36].

43

6 Zaključek

Tekom opravljanja naše raziskave smo potrdili, da je pri primarnih MMTV-PyMT tumorskih celicah z izbitim genom za stefin B prišlo do signifikantno višjega deleža smrti kot pri celicah divjega tipa. Hipotezo, da gre pri oksidativnem stresu sproženem s H2O2

za apoptozo, smo ovrgli. Potrdili smo spremembe lizosomov in mitohondrijev, najverjetneje zaradi povečanega nastanka ROS. Naši eksperimenti so namreč pokazali, da odsotnost stefina B vodi do povečanega nastanka ROS, kar pripelje preko oksidacije kardiolipina do celične smrti. Kljub temu, da pride do spremembe pH kislih veziklov, pa najverjetneje v celični smrti sproženi s 3 mM H2O2 katepsini nimajo glavne vloge.

Pogosto pa pri oksidativnem stresu pride do kombinacije različnih oblik celične smrti in ne moremo govoriti le o eni. Najverjetneje pride v celicah z odsotnim stefinom B do aktivacije NLRP3 inflamasoma in od ROS-odvisne celične smrti (npr. feroptoza), kar bi lahko potrdili v nadaljevanju raziskovalne naloge.

Predvidevali smo, da bosta antioksidanta NAC in vitC izboljšala občutljivost celic na oksidativni stres. To hipotezo smo delno potrdili, saj je NAC viabilnost celic izboljšal, vitC pa še poslabšal. Potrdili pa smo hipotezo, da bo NAC boljši antioksidant pri zmanjšanju vpliva H2O2 kot vitC. Preglednica 9 prikazuje pregled prvotno zastavljenih hipotez ter njihovo končno ovrednotenje.

Preglednica 9: Pregled ovrednotenja zastavljenih hipotez.

hipoteza ovrednotenje

Celice z izbitim genom za stefin B so bolj občutljive na

tretiranje s H2O2 kot celice divjega tipa. potrjena H2O2 sproži apoptozo v izbranem celičnem modelu. ovržena H2O2 povzroči poškodbe celičnih komponent. potrjena Antioksidanta NAC in vitC preprečita celično smrt in

omejita poškodbe sprožene s H2O2. delno potrjena NAC bo bolj učinkovito zmanjšal vpliv H2O2 kot vitC.

potrjena

Rezultati odpirajo nova vprašanja in možnosti za nove raziskave. Zanimivo bi bilo narediti poskuse še z nižjo koncentracijo H2O2, da bi preverili, če v takšnih pogojih pride do apoptoze. Nadalje bi lahko še potrdili, če katepsini ostanejo ujeti v lizosomih ali pa pride do izlitja le-teh v citosol. Z uporabo specifičnih inhibitorjev bi lahko preverili, katero izmed drugih oblik celične smrti smo sprožili s H2O2 in če ima NLRP3 inflamasom pomembno vlogo. Zanimivo bi bilo preveriti tudi stres v ER, ki ga tudi povezujejo s celično smrtjo.

44

7 Literatura

[1] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal: Global cancer statistics, 2012. CA. Cancer J. Clin. 2015, 65, 87–108.

[2] N. K. LoConte, J. E. Gershenwald, C. A. Thomson, T. E. Crane, G. E. Harmon, R. Rechis: Lifestyle Modifications and Policy Implications for Primary and Secondary Cancer Prevention: Diet, Exercise, Sun Safety, and Alcohol Reduction.

Am. Soc. Clin. Oncol. Educ. B. 2018, 38, 88–100.

[3] I. J. Majewski: On fitness: How do mutations shape the biology of cancer?

Biochem. Soc. Trans. 2019, 47, 559–569.

[4] D. Hanahan, R. A. Weinberg: The hallmarks of cancer. Cell. 2000, 100, 57–70.

[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Cancer as a Microevolutionary Process. 2002.

[6] D. M. Gilkes, G. L. Semenza, D. Wirtz: Hypoxia and the extracellular matrix:

Drivers of tumour metastasis. Nat. Rev. Cancer. 2014, 14, 430–439.

[7] J. Wang, K. Lei, F. Han: Tumor microenvironment : recent advances in various cancer treatments. 2018, 3855–3864.

[8] C. Viallard, B. Larrive: Tumor angiogenesis and vascular normalization : alternative therapeutic targets. 2017, 409–426.

[9] J. Zugazagoitia, C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo, L. Paz-Ares:

Current Challenges in Cancer Treatment. Clin. Ther. 2016, 38, 1551–1566.

[10] M. Arruebo, N. Vilaboa, B. Sáez-Gutierrez, J. Lambea, A. Tres, M. Valladares, Á. González-Fernández: Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011, 3, 3279–3330.

[11] A. Pišlar, M. Perišić Nanut, J. Kos: Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival. Semin. Cancer Biol. 2015, 35, 168–179.

[12] L. Galluzzi, I. Vitale, S. A. Aaronson, J. M. Abrams, D. Adam, P. Agostinis, et al.: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541.

[13] L. Galluzzi, J. M. Bravo-San Pedro, I. Vitale, S. A. Aaronson, J. M. Abrams, D.

Adam, et al.: Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ. 2015, 22, 58–73.

[14] M. S. D’Arcy: Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592.

[15] D. Tang, R. Kang, T. Vanden Berghe, P. Vandenabeele, G. Kroemer: The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364.

45

[16] T. Vanden Berghe, A. Linkermann, S. Jouan-Lanhouet, H. Walczak, P.

Vandenabeele: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 2014, 15, 135–147.

[17] D. Jantas, J. Chwastek, B. Grygier, W. Lasoń: Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress–Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox. Res. 2020, 37, 525–542.

[18] N. Robinson, R. Ganesan, C. Hegedűs, K. Kovács, T. A. Kufer, L. Virág:

Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019, 26.

[19] Y. Xie, W. Hou, X. Song, Y. Yu, J. Huang, X. Sun, R. Kang, D. Tang: Ferroptosis:

Process and function. Cell Death Differ. 2016, 23, 369–379.

[20] Y. Gong, Z. Fan, G. Luo, C. Yang, Q. Huang, K. Fan, H. Cheng, K. Jin, Q. Ni, X.

Yu, C. Liu: The role of necroptosis in cancer biology and therapy. Mol. Cancer.

2019, 18.

[21] J. F. R. Kerr, A. H. Wyllie, A. R. Currie: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer.

1972, 26, 239–257.

[22] S. Goldar, M. S. Khaniani, S. M. Derakhshan, B. Baradaran: Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pacific J. Cancer Prev. 2015, 16, 2129–2144.

[23] E. Devarajan, A. A. Sahin, J. S. Chen, R. R. Krishnamurthy, N. Aggarwal, A. M.

Brun, A. Sapino, F. Zhang, D. Sharma, X. H. Yang, A. D. Tora, K. Mehta: Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene. 2002, 21, 8843–8851.

[24] R. O. Poyton, K. A. Ball, P. R. Castello: Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009, 20, 332–340.

[25] I. I. C. Chio, D. A. Tuveson: ROS in Cancer: The Burning Question. Trends Mol.

Med. 2017, 23, 411–429.

[26] E. Eruslanov, S. Kusmartsev: Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 2010, 594, 57–72.

[27] C. Gorrini, I. S. Harris, T. W. Mak: Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947.

[28] S. Elmore: Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol.

2007, 35, 495–516.

[29] Y. Takada, A. Mukhopadhyay, G. C. Kundu, G. H. Mahabeleshwar, S. Singh, B.

B. Aggarwal: Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. Evidence for the

46

involvement of IκBα kinase and Syk protein-tyrosine kinase. J. Biol. Chem. 2003, 278, 24233–24241.

[30] J. N. Moloney, T. G. Cotter: ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64.

[31] R. K. Gupta, A. K. Patel, N. Shah, A. K. Chaudhary, U. K. Jha, U. C. Yadav, P.

K. Gupta, U. Pakuwal: Oxidative stress and antioxidants in disease and cancer: A review. Asian Pacific J. Cancer Prev. 2014, 15, 4405–4409.

[32] K. Das, A. Roychoudhury: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front.

Environ. Sci. 2014, 2, 53.

[33] A. M. Pisoschi, A. Pop: The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74.

[34] S. J. Padayatty, M. Levine: Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493.

[35] J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, T. Scott: UV radiation and the skin. Int.

J. Mol. Sci. 2013, 14, 12222–12248.

[36] E. Pawlowska, J. Szczepanska, J. Blasiak: Pro- And antioxidant effects of Vitamin C in cancer in correspondence to its dietary and pharmacological concentrations.

Oxid. Med. Cell. Longev. 2019.

[37] M. M. Lasram, A. J. Lamine, I. B. Dhouib, K. Bouzid, A. Annabi, N.

Belhadjhmida, M. Ben Ahmed, S. El Fazaa, J. Abdelmoula, N. Gharbi:

Antioxidant and anti-inflammatory effects of N-acetylcysteine against malathion-induced liver damages and immunotoxicity in rats. Life Sci. 2014, 107, 50–58.

[38] C. F. Yang, H. M. Shen, C. N. Ong: Ebselen induces apoptosis in HepG2 cells through rapid depletion of intracellular thiols. Arch. Biochem. Biophys. 2000, 374, 142–152.

[39] T. Cai, G. F. Fassina, M. Morini, M. G. Aluigi, L. Masiello, G. Fontanini, F.

D’Agostini, S. De Flora, D. M. Noonan, A. Albini: N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab. Investig. 1999, 79, 1151–1159.

[40] E. E. Sterchi: Special issue: Metzincin metalloproteinases. Mol. Aspects Med.

2009, 29, 255–257.

[41] B. Turk: Targeting proteases: Successes, failures and future prospects. Nat. Rev.

Drug Discov. 2006, 5, 785–799.

[42] S. Patel, A. Homaei, H. R. El-Seedi, N. Akhtar: Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed. Pharmacother. 2018, 105, 526–

532.

47

[43] V. Stoka, B. Turk, V. Turk: Lysosomal Cysteine Proteases: Structural Features and their Role in Apoptosis. IUBMB Life (International Union Biochem. Mol. Biol.

Life). 2005, 57, 347–353.

[44] B. Turk, D. Turk, V. Turk: Lysosomal cysteine proteases: More than scavengers.

Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 2000, 1477, 98–111.

[45] R. F. Dielschneider, E. S. Henson, S. B. Gibson: Lysosomes as Oxidative Targets for Cancer Therapy. Oxid. Med. Cell. Longev. 2017, 2017,.

[46] V. Turk, V. Stoka, O. Vasiljeva, M. Renko, T. Sun, B. Turk, D. Turk: Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim.

Biophys. Acta - Proteins Proteomics. 2012, 1824, 68–88.

[47] J. Reiser, B. Adair, T. Reinheckel: Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 2010, 120, 3421–3431.

[48] A. Rossi, Q. Deveraux, B. Turk, A. Sali: Comprehensive search for cysteine cathepsins in the human genome. Biol. Chem. 2004, 385, 363–372.

[49] V. Turk, B. Turk, D. Turk: Lysosomal cysteine proteases: Facts and opportunities.

EMBO J. 2001, 20, 4629–4633.

[50] E. Vidak, U. Javoršek, M. Vizovišek, B. Turk: Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells. 2019, 8, 264.

[51] O. C. Olson, J. A. Joyce: Cysteine cathepsin proteases: Regulators of cancer progression and therapeutic response. Nat. Rev. Cancer. 2015, 15, 712–729.

[52] M. Fonović, B. Turk: Cysteine cathepsins and extracellular matrix degradation.

Biochim. Biophys. Acta - Gen. Subj. 2014, 1840, 2560–2570.

[53] M. Rudzińska, A. Parodi, S. M. Soond, A. Z. Vinarov, D. O. Korolev, A. O.

Morozov, C. Daglioglu, Y. Tutar, A. A. Zamyatnin: The role of cysteine cathepsins in cancer progression and drug resistance. Int. J. Mol. Sci. 2019, 20.

[54] N. Aggarwal, B. F. Sloane: Cathepsin B: Multiple roles in cancer. Proteomics - Clin. Appl. 2014, 8, 427–437.

[55] T. Vizin, I. Christensen, H. Nielsen, J. Kos: Cathepsin X in serum from patients with colorectal cancer: Relation to prognosis. Radiol. Oncol. 2012, 46, 207–212.

[56] W. Zhang, S. Wang, Q. Wang, S. Yang, Z. Pan, L. Li: Overexpression of cysteine cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol. Rep.

2014, 31, 1334–1342.

[57] M. Zhao, F. Antunes, J. W. Eaton, U. T. Brunk: Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur. J.

Biochem. 2003, 270, 3778–3786.

48

[58] V. Turk, V. Stoka, D. Turk: Cystatins: Biochemical and structural properties, and medical relevance. Front. Biosci. 2008, 13, 5406–5420.

[59] M. Abrahamson, M. Alvarez-Fernandez, C. M. Nathanson: in (2003) Biochem.

Soc. Symp., Portland Press Ltd, 2003, pp. 179–199.

[60] S. M. Soond, M. V. Kozhevnikova, A. A. Zamyatnin, P. A. Townsend: Cysteine cathepsin protease inhibition: An update on its diagnostic, prognostic and therapeutic potential in cancer. Pharmaceuticals. 2019, 12.

[61] B. Breznik, A. Mitrović, T. T. Lah, J. Kos: Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie. 2019, 166, 233–250.

[62] C. Jedeszko, B. F. Sloane: Cysteine cathepsins in human cancer. Biol. Chem.

2004, 385, 1017–1027.

[63] S. Vozelj, N. Obermajer, J. Kos: Proteaze in njihovi inhibitorji v telesnih tekočinah kot diagnostični in prognostični tumorski kazalci. Farm. Vestn. 2007, 58, 133–138.

[64] G. Mikhaylov, U. Mikac, A. A. Magaeva, V. I. Itin, E. P. Naiden, I. Psakhye, L.

Babes, T. Reinheckel, C. Peters, R. Zeiser, M. Bogyo, V. Turk, S. G. Psakhye, B.

Turk, O. Vasiljeva: Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594–

602.

[65] A. Ritonja, W. Machleidt, A. J. Barrett: Amino acid sequence of the intracellular cysteine proteinase inhibitor cystatin B from human liver. Biochem. Biophys. Res.

Commun. 1985, 131, 1187–1192.

[66] K. Maher, B. J. Kokelj, M. Butinar, G. Mikhaylov, M. Manček-Keber, V. Stoka, O. Vasiljeva, B. Turk, S. A. Grigoryev, N. Kopitar-Jerala: A role for stefin B (cystatin B) in inflammation and endotoxemia. J. Biol. Chem. 2014, 289, 31736–

31750.

[67] N. Kopitar-Jerala: The role of stefin B in neuro-inflammation. Front. Cell.

Neurosci. 2015, 9, 1–8.

[68] E. Žerovnik, M. Pompe-Novak, M. Škarabot, M. Ravnikar, I. Muševič, V. Turk:

Human stefin B readily forms amyloid fibrils in vitro. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 2002, 1594, 1–5.

[69] L. A. Pennacchio, A.-E. Lehesjoki, N. E. Stone, V. L. Willour, K. Virtaneva, J.

Miao, E. D’Amato, L. Ramirez, M. Faham, M. Koskiniemi, J. A. Warrington, R.

Norio, A. de la Chapelle, D. R. Cox, R. M. Myers: Mutations in the Gene Encoding Cystatin B in Progressive Myoclonus Epilepsy (EPM1). Science (80-. ). 1996, 271, 1731–1734.

[70] R. Di Giaimo, M. Riccio, S. Santi, C. Galeotti, D. C. Ambrosetti, M. Melli: New insights into the molecular basis of progressive myoclonus epilepsy: a multiprotein

49

complex with cystatin B. Hum. Mol. Genet. 2002, 11, 2941–50.

[71] A. Rohilla, S. Kalra, G. Singh, J. Jain: OXIDATIVE STRESS AND EPILEPSY:

A REVIEW. n.d.

[72] M. K. Lehtinen, S. Tegelberg, H. Schipper, H. Su, H. Zukor, O. Manninen, O.

Kopra, T. Joensuu, P. Hakala, A. Bonni, A. E. Lehesjoki: Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J.

Neurosci. 2009, 29, 5910–5915.

[73] I. Zore, M. Krašovec, N. Cimerman, R. Kuhelj, B. Werle, H. J. Nielsen, N.

Brünner, J. Kos: Cathepsin B/cystatin C complex levels in sera from patients with lung and colorectal cancer. Biol. Chem. 2001, 382, 805–810.

[74] M. Butinar, M. T. Prebanda, J. Rajković, B. Jerič, V. Stoka, C. Peters, T.

Reinheckel, A. Krüger, V. Turk, B. Turk, O. Vasiljeva: Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene. 2014, 33, 3392–3400.

[75] H. Bai, B. Yang, W. Yu, Y. Xiao, D. Yu, Q. Zhang: Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp. Cell Res. 2018, 362, 180–

187.

[76] W. Blaszczak, W. Barczak, J. Masternak, P. Kopczynski, A. Zhitkovich, B. Rubis:

Vitamin C as a modulator of the response to cancer therapy. Molecules. 2019, 24.

[77] M. Breau, A. Houssaini, L. Lipskaia, S. Abid, E. Born, E. Marcos, G. Czibik, A.

Attwe, D. Beaulieu, A. Palazzo, J. M. Flaman, B. Bourachot, G. Collin, J. T. van Nhieu, D. Bernard, F. Mechta-Grigoriou, S. Adnot: The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight. 2019, 4.

[78] O. Vasiljeva, A. Papazoglou, A. Krüger, H. Brodoefel, M. Korovin, J. Deussing, N. Augustin, B. S. Nielsen, K. Almholt, M. Bogyo, C. Peters, T. Reinheckel:

Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242–5250.

[79] G. Zhang, V. Gurtu, S. R. Kain, G. Yan: Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques. 1997, 23, 525–531.

[80] L. C. Crowley, A. P. Scott, B. J. Marfell, J. A. Boughaba, G. Chojnowski, N. J.

Waterhouse: Measuring cell death by propidium iodide uptake and flow cytometry.

Cold Spring Harb. Protoc. 2016, 2016, 647–651.

[81] S. Ivanova, U. Repnik, L. Boji, A. Petelin, V. Turk, B. Turk: Chapter Nine Lysosomes in Apoptosis. Methods Enzymol. 2008, 442, 183–199.

[82] K. Saito, M. Miyazawa, Y. Nukada, H. Sakaguchi, N. Nishiyama: Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.

Toxicol. Vitr. 2013, 27, 857–863.

50

[83] P. M, P. RH: Detection of changes in mitochondrial function during apoptosis by simultaneous staining with multiple fluorescent dyes and correlated multiparameter flow cytometry. Cytometry. 1999, 35.

[84] V. Gurtu, S. R. Kain, G. Zhang: Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal. Biochem. 1997, 251, 98–102.

[85] S. Shalini, L. Dorstyn, S. Dawar, S. Kumar: Old, new and emerging functions of caspases. Cell Death Differ. 2015, 22, 526–539.

[86] M. Andersson, J. Sjostrand, A. Petersen, A. K. S. Honarvar, J. O. Karlsson:

Caspase and proteasome activity during staurosporin-induced apoptosis in lens epithelial cells. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2623–2632.

[87] R. Rinne, P. Saukko, M. Järvinen, A. E. Lehesjoki: Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy.

Ann. Med. 2002, 34, 380–385.

[88] C. O. Eno, G. Zhao, A. Venkatanarayan, B. Wang, E. R. Flores, C. Li: Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic. Biol. Med. 2013, 65, 26–37.

[89] P. Boya, G. Kroemer: Lysosomal membrane permeabilization in cell death.

Oncogene. 2008, 27, 6434–6451.

[90] S. J. Dixon, B. R. Stockwell: The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17.

[91] G. Petrosillo, N. Di Venosa, F. M. Ruggiero, M. Pistolese, D. D’Agostino, E.

Tiravanti, T. Fiore, G. Paradies: Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim. Biophys. Acta - Bioenerg. 2005, 1710, 78–

86.

[92] G. Paradies, V. Paradies, F. M. Ruggiero, G. Petrosillo: Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells. 2019, 8, 728.

[93] A. Okamoto, M. Tanaka, C. Sumi, K. Oku, M. Kusunoki, K. Nishi, Y. Matsuo, K.

Takenaga, K. Shingu, K. Hirota: The antioxidant N-acetyl cysteine suppresses lidocaine-induced intracellular reactive oxygen species production and cell death in neuronal SH-SY5Y cells. BMC Anesthesiol. 2016, 16.

[94] H. Yang, Y. Xie, D. Yang, D. Ren: Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget. 2017, 8, 25310–25322.

[95] J. Du, J. J. Cullen, G. R. Buettner: Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta - Rev. Cancer. 2012, 1826, 443–457.

[96] N. Li, Y. He, L. Wang, C. Mo, J. Zhang, W. Zhang, J. Li, Z. Liao, X. Tang, H.

51

Xiao: D -galactose induces necroptotic cell death in neuroblastoma cell lines. J.

Cell. Biochem. 2011, 112, 3834–3844.

[97] J. Xiang, C. Wan, R. Guo, D. Guo: Is Hydrogen Peroxide a Suitable Apoptosis Inducer for All Cell Types? Biomed Res. Int. 2016, 2016.

[98] G. Zhong, S. Qin, D. Townsend, B. A. Schulte, K. D. Tew, G. Y. Wang: Oxidative stress induces senescence in breast cancer stem cells. Biochem. Biophys. Res.

Commun. 2019, 514, 1204–1209.

[99] S. Guha, E. E. Coffey, W. Lu, J. C. Lim, J. M. Beckel, A. M. Laties, K. Boesze-Battaglia, C. H. Mitchell: Approaches for detecting lysosomal alkalinization and impaired degradation in fresh and cultured RPE cells: Evidence for a role in retinal degenerations. Exp. Eye Res. 2014, 126, 68–76.

[100] H. Yang, R. M. Villani, H. Wang, M. J. Simpson, M. S. Roberts, M. Tang, X.

Liang: The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp.

Clin. Cancer Res. 2018, 37.

[101] M. M. Faas, P. de Vos: Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta - Mol. Basis Dis. 2020, 1866.

[102] N. Tsesin, B. Khalfin, I. Nathan, A. H. Parola: Cardiolipin plays a role in KCN-induced necrosis. Chem. Phys. Lipids. 2014, 183, 159–168.

[103] Y. Sun, P. Chen, B. Zhai, M. Zhang, Y. Xiang, J. Fang, S. Xu, Y. Gao, X. Chen, X. Sui, G. Li: The emerging role of ferroptosis in inflammation. Biomed.

Pharmacother. 2020, 127.

[104] J. Wang, B. Deng, Q. Liu, Y. Huang, W. Chen, J. Li, Z. Zhou, L. Zhang, B. Liang, J. He, Z. Chen, C. Yan, Z. Yang, S. Xian, L. Wang: Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis.

2020, 11.

[105] J. Tschopp, K. Schroder: NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 2010, 10, 210–215. Mechanisms and Effector Functions. Cell. 2016, 165, 792–800.

[108] A. C. K. Yaw, E. W. L. Chan, J. K. Y. Yap, C. W. Mai: The effects of NLRP3 inflammasome inhibition by MCC950 on LPS-induced pancreatic adenocarcinoma inflammation. J. Cancer Res. Clin. Oncol. 2020, 146, 2219–2229.

52

[109] R. Zhou, A. S. Yazdi, P. Menu, J. Tschopp: A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011, 469, 221–226.

[110] W. C. Chong, M. D. Shastri, R. Eri: Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. Int. J. Mol.

Sci. 2017, 18.

[111] R. Iurlaro, C. Muñoz-Pinedo: Cell death induced by endoplasmic reticulum stress.

FEBS J. 2016, 283, 2640–2652.

[112] S. Y. Sun: N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol.

Ther. 2010, 9, 109.

In document Neža Gaube (Strani 64-75)