• Rezultati Niso Bili Najdeni

Objavljene publikacije v okviru doktorske naloge

V zaključnem poglavju lahko ugotovimo, da so bili postavljeni cilji naloge uresničeni.

Rezultati in ugotovitve doktorske naloge so predstavljene v člankih, ki so bili objavljeni v priznanih tujih znanstvenih revijah in na mednarodnih konferencah.

Znanstveni članki v revijah iz baz podatkov SNIP in JCR:

1) D. Tomažinčič, M. Sedlaček, B. Podgornik, J. Klemenc: Influence of different micro-imprints to fatigue life of components. Materials Performance and Characterization ASTM International 6 (2017) str. 79–95.

2) D. Tomažinčič, B. Nečemer, M. Vesenjak, J. Klemenc: Low‐cycle fatigue life of thin‐

plate auxetic cellular structures made from aluminium alloy 7075‐T651. Fatigue &

Fracture of Engineering Materials & Structures 42 (2019) str. 1022–1036.

 Članek je prejel priznanje za najbolj brane publikacije za obdobje 2018-2019.

3) D. Tomažinčič, M. Vesenjak, J. Klemenc: Prediction of static and low-cycle durability of porous cellular structures with positive and negative Poisson’s ratios. Theoretical and Applied Fracture Mechanics 106 (2020) str. 102479–102492.

4) D. Tomažinčič, M. Borovinšek, Z. Ren, J. Klemenc: Improved prediction of low-cycle fatigue life for high-pressure die-cast aluminium alloy AlSi9Cu3 with significant porosity. International Journal of Fatigue 144 (2021) str. 106061–106073.

5) D. Tomažinčič, Ž. Virk, P. M. Kink, G. Jerše, J. Klemenc: Predicting the Fatigue Life of an AlSi9Cu3 Porous Alloy Using a Vector-Segmentation Technique for a Geometric Parameterisation of the Macro Pores. MDPI Metals 11 (2021) str. 1–21.

Prispevki na konferenci:

6) D. Tomažinčič, J. Klemenc: Napredna metoda za izboljšanje napovedi dobe trajanja 2- in 3-D poroznih celičnih struktur. Inženirstvo - svet novih priložnosti: zbornik 9.

Mednarodne konference strojnih inženirjev. Ljubljana, Slovenija, 2020, str. 52–53.

 Publikacija je prejela priznanje za odličen prispevek v kategoriji raziskave.

7) D. Tomažinčič, J. Klemenc: Modifying a Coffin-Manson curve of an aluminium alloy AlSi9Cu3 by considering an effect of macro porosity. FFW 2021: The 9th International Conference on Fracture Fatigue and Wear. Gent, Belgija, 2021.

Zaključki

9 Literatura

[1] A. Bižal, J. Klemenc, M. Fajdiga: Modelling the fatigue life reduction of an AlSi9Cu3 alloy caused by macro-porosity. Eng. Comput. 31 (2015) str. 259–269.

[2] A. Bižal, J. Klemenc, M. Fajdiga: Evaluating the Statistical Significance of a Fatigue-Life Reduction Due to Macro-Porosity. Srtoj. Vestn.-J. Mech. E. 60 (2014) str. 407–416.

[3] S. Ghosh, D. Dimiduk: Computational Methods for Microstructure-Property Relationships. Springer Science, Business Media, LLC, Ohio, 2011.

[4] L. M. Kachanov: Introduction to Continuum Damage Mechanics. Kluwer Academic Publishers, Dordrecht, 1986.

[5] A. Bižal: Napovedovanje zdržljivosti tlačno litih izdelkov: doktorska disertacija.

Ljubljana, 2013.

[6] Z. Chen, C. Butcher: Micromechanics Modelling of Ductile Fracture. Springer Science, Business Media, Dordrecht, 2013.

[7] Z. Kampuš: Osnove tehnologije preoblikovanja kovin. Fakulteta za strojništvo, Ljubljana, 2003.

[8] E. Vinarcik: High integrity die casting processes. Published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[9] J. McEvily: Metal Failures - Mechanisms, Analysis, Prevention. (2th ed.), John Wiley & Sons, Inc., Hoboken, New Jersey, 2013.

[10] G. Hütter, L. Zybell: Recent Trends in Fracture and Damage Mechanics. Springer International Publishing, New York, 2016.

[11] J. P. Davim: Surface Integrity in Machining. Springer-Verlag, London, 2010.

[12] J. D. Verhoeven: Fundamentals of Physical Metallurgy. Wiley, New York, 1975.

[13] R. E. Smallman, R. J. Bishop: Modern Physical Metallurgy and Materials Engineering. Elsevier Science Ltd, London, 1999.

[14] P. P. Milella: Fatigue and Corrosion in Metals. Springer-Verlag, New York, 2013.

[15] R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs: Metal Fatigue in Engineering. (2th ed.), Wiley-Interscience Publication, New York, 2001.

[16] J. J. Xiong, R. A. Shenoi: Fatigue and Fracture Reliability Engineering. Springer, New York, 2011.

[17] H. Altenbach, J. J. Skrzypek: Creep and Damage in Materials and Structures.

Springer-Verlag, New York, 1999.

[18] B. Farahmand: Virtual Testing and Predictive Modeling (For Fatigue and Fracture Mechanics Allowables). Springer Science, Business Media, LLC, New York, 2009.

[19] Y. Sumi: Mathematical and Computational Analyses of Cracking Formation.

Springer, New York, 2014.

[20] S. S. Manson, G. R. Halford: Fatigue and Durability of Structural Materials. ASM International, Materials Park, Ohio, 2006.

[21] H. A. Richard, M. Sander: Fatigue Crack Growth (Detect, Assess, Avoid). Springer International Publishing, New York, 2016.

[22] A. R. Khoei: Extended Finite Element Method: Theory and Applications. John Wiley

& Sons, Ltd., Chichester, 2015.

[23] G. Ventura, E. Benvenuti: Advances in Discretization Methods (Discontinuities, Virtual Elements, Fictitious Domain Methods). SEMA SIMAI Springer Series, 2016.

[24] S. Pommier, A. Gravouil, N. Moes, A. Combescure: Extended Finite Element Method for Crack Propagation. Wiley-ISTE, London, 2011.

[25] K. Saanouni: Numerical Modelling in Damage Mechanics. Hermes Science Technology and Practices. ASTM Stock Number: STP1367, Baltimore, 2000.

[30] W. Zhang, Y. Cai: Continuum Damage Mechanics and Numerical Applications.

Zhejiang University Press, Hangzhou, 2010.

[31] A. K. Das: Metallurgy, of Failure Analysis. Tata McGraw-Hill Publishing Company Limited, New York, 1997.

[32] M. Janežič: Vpliv naključnosti parametrov poškodbenih modelov na razvojno napovedovanje zdržljivosti izdelkov: doktorska disertacija. Ljubljana, 2010.

[33] E. Haibach: Verfahren und daten zur bauteilberechnung. (3rd ed.), Springer-Verlag, Berlin, 2006.

[34] Evrokod: 3 (EN 1993): del 1-9.

[35] C. J. Huberty, S. Olejnik: Applied MANOVA and Discriminant Analysis. (2th ed.), The University of Georgia, New Jersey, 2006.

[36] D. W. Wichern, R. A. Johnson: Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Pearson Education, Inc., London, 2007.

[37] L. A. Girifalco: Statistical mechanics of solids. Oxford University Press, New York, 2000.

[38] J. Klemenc, M. Fajdiga: Improved modelling of the loading spectra using a mixture model approach. Int. J. Fatigue 30 (2008) str. 1298–1313.

[39] S. Landau, B. Everitt: A Handbook of Statistical Analyses using SPSS. Chapman &

Hall/CRC Press LLC, London, 2004.

[40] R. Heck, S. Thomas: Multilevel Modeling of Categorical Outcomes Using IBM SPSS. Taylor & Francis Group, LLC, New York, 2012.

[41] R. P. Lewis, K. Reynolds, C. Gagg: Forensic Materials Engineering: Case Studies.

CRC Press LLC, New York, 2004.

[42] H. Czichos: Handbook of Technical Diagnostics. Springer-Verlag, Heidelberg, 2013.

[43] ASTM E606-92:1996: Standard practice for strain-controlled fatigue testing.

[44] H. Mayer, M. Papakyriacou, B. Zettl, S. E. Stanzl-Tschegg: Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. Int. J. Fatigue 25 (2003) str. 245–256.

[45] D. G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys. CRC Press, Taylor & Francis Group, LLC, New York, 2008.

[46] M. A. T. Figueiredo, A. K. Jain: Unsupervised learning of finite mixture models.

IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) str. 381–396.

[47] M. Nagode, M. Fajdiga: The REBMIX algorithm for the multivariate finite mixture estimation. Communications in Statistics - Theory and Methods 40 (2011) str. 2022–

2034.

[48] Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions.

Elsevier Science Ltd, London, 2002.

[49] Y. Murakami, M. Endo: Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue 16 (1994) str. 163–182.

[50] S. Wenlong, C. Xiaokai, W. Lu: Analysis of Energy Saving and Emission Reduction of Vehicles Using Light Weight Materials. Enrgy. Proced. 88 (2016) str. 889–893.

[51] J. Linder, A. Arvidsson, J. Kron: The influence of porosity on the fatigue strength of high-pressure die cast aluminium. Fatigue. Fract. Eng. Mater. Struct. 29 (2006) str.

357–363.

[52] I. Vicario, I. Crespo, L. Plaza, P. Caballero, I. Idoiaga: Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting. Metals 6 (2016) str. 1–16.

[53] L. Krstulović-Opara, M. Vesenjak, I. Duarte, Z. Ren, Ž. Domazet: Infrared Thermography as a Method for Energy Absorption Evaluation of Metal Foams.

Mater. Today-Proc. 3 (2016) str. 1025–1030.

[54] P. Szalva, I. N. Orbulov: Fatigue testing and non-destructive characterization of AlSi9Cu3(Fe) die cast specimens by computer tomography. Fatigue Fract. Eng.

Mater. Struct. 43 (2020) str. 1949–1958.

[55] F. Taheri, Y. Lu, M. Mehrzadi: Microstructure and Fatigue Characteristic of AM60B Magnesium Alloy. Metals 2 (2012) str. 411–440.

[56] L. Lattanzi, A. Fabrizi, A. Fortini, M. Merlin, G. Timelli: Effects of microstructure and casting defects on the fatigue behavior of the high-pressure die-cast AlSi9Cu3(Fe) alloy. Procedia Struct Integrity 7 (2017) str. 505–512.

[57] H. Mayer, M. Papakyriacou, B. Zettl, S. E. Stanzl-Tschegg: Influence of porosity on the fatigue limit of die cast magnesiumand aluminium alloys. Int. J. Fatigue 25 (2003) str. 245–256.

[58] D. Tomažinčič, B. Nečemer, M. Vesenjak, J. Klemenc: Low‐cycle fatigue life of thin‐

plate auxetic cellular structures made from aluminium alloy 7075‐T651. Fatigue Fract. Eng. Mater. Struct. 42 (2019) str. 1022–1036.

[59] R. Lakes: Foam Structures with a Negative Poisson’s Ratio. Science 235 (1987) str.

1038–1040.

[60] J. N. Grima, V. Zammit, R. Gatt, A. Alderson, K. E. Evans: Auxetic behaviour from rotating semi-rigid units. Phys. Status. Solidi. B. Basic. Solid. State. Phys. 244 (2007) str. 866–882.

[61] N. Novak, M. Vesenjak, L. Krstulović-Opara, Z. Ren: Mechanical characterisation of auxetic cellular structures built from inverted tetrapods. Compos. Struct. 196 (2018) str. 96–107.

[62] A. Alderson, K. L. Alderson: Auxetic materials. Proc. Inst. Mech. Eng. G. J. Aerosp.

Eng. 221 (2007) str. 565–575.

[63] F. Scarpa, L. G. Ciffo, J. R. Yates: Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 13 (2003) str. 49–56.

[64] D. Tomažinčič, M. Vesenjak, J. Klemenc: Prediction of static and low-cycle durability of porous cellular structures with positive and negative Poisson’s ratios.

Theor. Appl. Fract. Mech. 106 (2020) str. 102479–102492.

[65] W.-H. Choi, C.-G. Kim: Broadband microwave-absorbing honeycomb structure with novel design concept. Compos. Part. B-Eng. 83 (2015) str. 14–20.

[66] M. Vesenjak: Influence of the explosive treatment on the mechanical properties and microstructure of copper. Materials and Design 75 (2015) str. 85–94.

[67] C. Gagg: Forensic Engineering: The Art and Craft of a Failure Detective. CRC Press, Taylor & Francis Group, LLC, New York, 2020.

[68] A. Wöhler: Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit des Wagen-Achsen. Zeitschrift für Bauwesen, X (1860) str. 583–616.

[69] O. H. Basquin: The exponential law of endurance tests. American Society for Testing and Materials Proceedings 10 (1910) str. 625–630.

[70] A. Palmgren: Die Lebensdauer von Kugellagern (The Fatigue Life of Ball-Bearings).

Zeitschrift des Vereins Deutscher Ingenieure 68 (1924) str. 339–341.

[71] M. A. Miner: Cumulative damage in fatigue. Journal of Applied Mechanics 12 (1945) str. A159–A164.

[72] E. Gassner: Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau.

Deutsche Luftwacht, Ausgabe Luftwissen 6 (1939) str. 61–64.

[73] P. A. Withey: Fatigue failure of the de Havilland comet I. Eng. Fail. Anal. 4 (1997) str. 147–154.

[74] D. Tomazincic, M. Sedlacek, B. Podgornik, J. Klemenc: Influence of different micro-imprints to fatigue life of components. Mater. Perform. Charact. ASTM Int. 6 (2017) str. 79–95.

[75] J.-K. Kim, D.-S. Shim: The variation in fatigue crack growth due to the thickness effect. Int. J. Fatigue 22 (2000) str. 611–618.

[76] H. E. Boyer: Atlas of Fatigue Curves. ASM lnternational, Ohio, 1986.

[77] A. J. McEvily: Atlas of Stress-Corrosion and Corrosion Fatigue Curves. ASM lnternational, Ohio, 1986.

[78] H. S. Turkmen, R. E. Loge, P. R. Dawson, M. P. Miller: On the mechanical behaviour of AA 7075-T6 during cyclic loading. Int. J. Fatigue 25 (2003) str. 267–

281.

[79] ASTM E8 / E8M – 21: Standard Test Methods for Tension Testing of Metallic Materials.

[80] J. Klemenc, M. Fajdiga: Joint estimation of E-N curves and their scatter using evolutionary algorithms. Int. J. Fatigue 56 (2013) str. 42–53.

[81] X. Hou, V. V. Silberschmidt: Metamaterials with Negative Poisson’s Ratio: A Review of Mechanical Properties and Deformation Mechanisms. Springer International Publishing, New York, 2015.

[82] G. Bianchi, G. S. Aglietti, G. Richardson: Static and Fatigue Behaviour of Hexagonal Honeycomb Cores under In-plane Shear Loads. Appl. Compos. Mater.

19 (2012) str. 97–115.

[83] J. A. Österreicher, G. Kirov, S. S. A. Gerstl, E. Mukeli, F. Grabner, M. Kumar:

Stabilization of 7xxx aluminium alloys. J. Alloy. Compd. 740 (2018) str. 167–173.

[84] B. Shaji, V. Karthik, A. Sivasubramanian, V. Jayakumar: Structural Analysis on Al 7075 T-651 Shaft. J. Chem. Pharm. Sci. 10 (2017) str. 646–648.

[85] Y. Murakami, M. Endo: Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue 16 (1994) str. 163–182.

[86] M. T. D. Giovanni, J. T. O. de Menezes, E. Cerri, E. M. Castrodeza: Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy. Journal of Materials Research and Technology 9 (2020) str. 1286–1295.

[87] V. Khalajzadeh, K. D. Carlson, D. G. Backman, C. Beckermann: A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification. Metall.

Mater. Trans. A. 48 (2017) str. 1797–1816.

[88] Corp, D. S. S: SIMULIA Fe-Safe User Guide. (1st ed.), Dassault Systemes, Vélizy-Villacoublay, 2019.

[89] M. W. Brown, K. J. Miller: A theory for fatigue failure under multiaxial stress–strain conditions. Proc. Inst. Mech. Eng. 187 (1973) str. 745–755.

[90] N. E. Dowling: Mechanical Behaviour of Materials. (4th ed.), Pearson, London, 2013.

[91] D. Tomažinčič, M. Borovinšek, Z. Ren, J. Klemenc: Improved prediction of low-cycle fatigue life for high-pressure die-cast aluminium alloy AlSi9Cu3 with significant porosity. Int. J. Fatigue 144 (2021) str. 106061–106073.

[92] D. Tomažinčič, Ž. Virk, P. M. Kink, G. Jerše, J. Klemenc: Predicting the Fatigue Life of an AlSi9Cu3 Porous Alloy Using a Vector-Segmentation Technique for a Geometric Parameterisation of the Macro Pores. Metals 11 (2021) str. 1–21.

[93] X. Wang, Q. Ni: Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J. Orthop. Res. 21 (2003) str. 312–319.

[94] Z. Wang, J. Gao, K. Chang, L. Meng, N. Zhang, Z. Guo: Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties. RSC Adv. 8 (2018) str. 15933–15939.

[95] F. García-Moreno: Commercial Applications of Metal Foams: Their Properties and Production. Materials 9 (2016) str. 1–27.

[96] D. K. Rajak, L. A. Kumaraswamidhas, S. Das: Technical overview of aluminum alloy foam. Rev. Adv. Mater. Sci. 48 (2017) str. 68–86.

[97] J. Linder, A. Arvidsson, J. Kron: The influence of porosity on the fatigue strength of high-pressure die cast aluminium. Fatigue Fract. Eng. Mater. Struct. 29 (2006) str.

357–363.

[98] D. Andrés, R. Lacalle, J. A. Álvarez: Creep property evaluation of light alloys by means of the Small Punch test: Creep master curves. Mater. Des. 96 (2016) str. 122–

130.

[99] M. Borovinšek, M. Vesenjak, M. Jože, Z. Ren: Computational Reconstruction of Scanned Aluminum Foams for Virtual Testing. J. Serbian. Soc. Comput. Mech. 2 (2008) str. 16–28.

[100] J. Klemenc, M. Janezic, M. Fajdiga: Modelling the dependency of the Smith–

Watson–Topper parameter on the cycles‐to‐failure using serial hybrid neural networks. Fatigue Fract. Eng. Mater. Struct. 35 (2012) str. 809–825.

[101] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater.

Des. 105 (2016) str. 160–170.

[102] M. Rezanezhad, S. A. Lajevardi, S. Karimpouli: Effects of pore-crack relative location on crack propagation in porous media using XFEM method. Theor. Appl.

Fract. Mech. 103 (2019) str. 102241–102251.

[103] D. L. McDowell, K. Gall, M. F. Horstemeyer, J. Fan: Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fract. Mech. 70 (2003) str. 49–80.

[104] S. Siddique: Reliability of Selective Laser Melted AlSi12 Alloy for Quasistatic and Fatigue Applications. Springer Nature, Wiesbaden, 2019.

[105] S. Gain, T. E. F. Silva, A. M. P. Jesus, A. Cavaleiro, P. A. R. Rosa, A. Reis:

Mechanical characterization of the AlSi9Cu3 cast alloy under distinct stress states and thermal conditions. Eng. Fract. Mech. 216 (2019) str. 106499–106520.

[106] M. P. Savruk, A. Kazberuk: Stress Concentration at Notches. (1th ed.), Springer International Publishing, New York, 2017.

[107] A. Pineau, A. A. Benzerga, T. Pardoen: Failure of metals I: Brittle and ductile fracture. Acta. Mater. 107 (2016) str. 424–483.

[108] M. Bäker: How to get meaningful and correct results from your finite element model.

Institut für Werkstoffe, Technische Universität Braunschweig, Braunschweig, 2018.

[109] R. Rennert, E. Kullig, M. Vormwald, A. Esderts, D. Siegele: FKM Rihtlinie:

Rechnerische festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen. (6th ed.), VDMA Verlag, Frankfurt am Main, 2012.

[110] D. Sohn, Y.-S. Cho, S. Im: A novel scheme to generate meshes with hexahedral elements and poly-pyramid elements: The carving technique. Comput. Methods Appl. Mech. Eng. 201–204 (2012) str. 208–227.

[111] A. F. Liu: Mechanics and Mechanisms of Fracture: An Introduction. ASM International, Ohio, 2005.

[112] S. Sharma: Applied Multivariate Techniques. John Wiley & Sons, New York, 1996.

[113] B. Panić, J. Klemenc, M. Nagode: Improved initialization of the EM algorithm for mixture model parameter estimation. Mathematics. 8 (2020) str. 1–29.

[114] L. Susmel: Multiaxial notch fatigue: From nominal to local stress/strain quantities.

Woodhead Publishing Limited and CRC Press LLC, New York, 2009.

[115] H. Ruefer: Living Without Mathematical Statistics: Accurate Analysis, Diagnosis, and Prognosis Based on the Taguchi Method. Springer Nature, London, 2019.

[116] H. Hooputra, H. Gese, H. Dell, H. Werner: A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions. Int. J. Crashworthines 9 (2004) str. 449–464.

[117] F. Zárate, E. Oñate: A simple FEM–DEM technique for fracture prediction in materials and structures. Comput. Part. Mech. 2 (2015) str. 301–314.

[118] M. Kõrgesaar, J. Romanoff: Influence of softening on fracture propagation in large-scale shell structures. Int. J. Solids Struct. 50 (2013) str. 3911–3921.

[119] ABAQUS: Abaqus Theory Manual v.6.11. Hibbitt, Karlsson and Sorensen Inc., Providence, 2011.

[120] P. Xiang, L.-J. Jia, M. Shi, M. Wu: Ultra-low cycle fatigue life of aluminum alloy and its prediction using monotonic tension test results. Eng. Fract. Mech. 186 (2017) str. 449–465.

[121] R. Kiran, K. Khandelwal: A micromechanical cyclic void growth model for ultra-low cycle fatigue. Int. J. Fatigue 70 (2015) str. 24–37.

Literatura

10 Priloga A

A.1 Marginalne gostote porazdelitve poroznosti

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.1: Marginalne gostote porazdelitve poroznosti za vzorec št. 4.

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.2: Marginalne gostote porazdelitve poroznosti za vzorec št. 7.

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.3: Marginalne gostote porazdelitve poroznosti za vzorec št. 16.

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.4: Marginalne gostote porazdelitve poroznosti za vzorec št. 17.

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.5: Marginalne gostote porazdelitve poroznosti za vzorec št. 31.

(a) 3D model poroznosti (b) MGPV volumnov por

(c) MGPV oddaljenosti por od centra (d) MGPV kvocienta b/a

(e) MGPV kvocienta c/a (f) MGPV kosinusa polosi a glede na Z os Slika A.6: Marginalne gostote porazdelitve poroznosti za vzorec št. 36.

A.2 Dendrogrami za hierarhično uskupinjevanje z Wardovo metodo

Slika A.7: Vzorec št. 4 – eliptične pore.

Slika A.8: Vzorec št. 7 – eliptične pore.

Slika A.9: Vzorec št. 12 – eliptične pore.

Slika A.10: Vzorec št. 16 – eliptične pore.

Slika A.11: Vzorec št. 17 – eliptične pore.

Slika A.12: Vzorec št. 31 – eliptične pore.

Slika A.13: Vzorec št. 36 – eliptične pore.

Priloga A

Življenjepis

Dejan Tomažinčič je bil rojen 22. 7. 1981 v Postojni. V letih od 1988 do 1996 je obiskoval Osnovno šolo Toneta Tomšiča Knežak in se nato leta 1996/97 vpisal na Srednjo šolo Postojna in nato na Srednjo tehniško šolo Koper. Ti stopnji izobraževanja je zaključil z odličnim uspehom kot najboljši dijak razreda ter si leta 2001 pridobil naziv strojni tehnik.

Z željo po nadgradnji tehničnega znanja se je v študijskem letu 2001/02 vpisal na Strojno fakulteto v Ljubljani. Visokošolski strokovni študijski program je z uspešnim zagovorom diplome zaključil 9. 2. 2006 s povprečno oceno 8,404 in oceno diplome 9/10. Po končanem šolanju se je leta 2006 zaposlil v podjetju Liv Kolesa, d. o. o., iz Postojne. Sledilo je nadaljevanje izobraževanja na specialističnem študijskem programu v smeri Konstruiranja in razvojne tehnike, ki ga je uspešno zaključil 26. 10. 2011 s skupno povprečno oceno 9,25. Od leta 2014 je zaposlen na Fakulteti za strojništvo UL, v Laboratoriju za vrednotenje konstrukcij LAVEK, saj je bil 28. 8. 2014 izvoljen v naziv asistenta za področje konstrukcijske in razvojne tehnike. Na katedri KSERV poučuje predmete Strojni elementi 1 in 2, tako na projektno aplikativnem, kot tudi na razvojno-raziskovalnem programu. Leta 2017 je od FS UL prejel tudi priznanje za kakovostno pedagoško delo.

Poleg pedagoške dejavnosti deluje tudi na več industrijskih projektih. Na znanstvenem področju ima sprejetih v objavo pet izvirnih znanstvenih člankov, od katerih so štirje v revijah s faktorjem vpliva serijskih publikacij iz Journal Citation Reports JCR. Vsebine iz člankov opisujejo metode za določanje in oceno dobe trajanja poroznih, celičnih struktur iz aluminijevih zlitin, kar se nanaša tudi na temo doktorske naloge.